

HALEY SYSTEMS, INC. • WATERFRONT CORPORATE PARK, SUITE 600 • 2200 GEORGETOWNE DRIVE • SEWICKLEY, PA 15143 USA
1-724-934-RULE (7853) • 1-800-233-2622 (WITHIN USA) • FAX: 1-724-934-7860 • EMAIL: SUPPORT@HALEY.COM • WEB: WWW.HALEY.COM

HaleyAuthority
Tutorial

Revision 1.1 – 8/18/07

HaleyAuthority Tutorial

Haley Systems, Inc. 1

HaleyAuthority Tutorial

Haley Systems, Inc. 2

Contents

1 Introduction to HaleyAuthority ... 4
1.1 Scenario ... 4
1.2 Computers that hear and obey... 6
1.3 Advantages of HaleyAuthority .. 7

1.3.1 Advantage of rules .. 7
1.3.2 Advantage of natural language.. 9

1.4 Haley Systems, Inc. ... 10

2 Managing policy with HaleyAuthority... 11
2.1 Scenario ... 11
2.2 Grammar and linguistics... 12

2.2.1 Parts of speech ... 12
2.2.2 Grammatical roles in a sentence ... 13

2.3 Business concepts ... 14
2.3.1 Entities .. 15
2.3.2 Values ... 15
2.3.3 Relations ... 16
2.3.4 Phrasings .. 18

2.4 Statements and rules ... 19
2.5 Scenario ... 21

3 Writing policies clearly .. 22
3.1 Scenario ... 22
3.2 Clarifying the statements.. 23

3.2.1 Find the unstated assumptions.. 23
3.2.2 Identify the concepts ... 23
3.2.3 Minimize negative logic ... 24
3.2.4 Investigate limits.. 24
3.2.5 Split or into multiple statements... 25
3.2.6 Minimize punctuation... 25
3.2.7 Minimize plurals... 26
3.2.8 Avoid mass nouns ... 26
3.2.9 Avoid pronouns ... 27
3.2.10 Using a, an, and the .. 27
3.2.11 Use present tense ... 29
3.2.12 Minimize modal verbs.. 29
3.2.13 Minimize then .. 29

3.3 Scenario ... 30

HaleyAuthority Tutorial

Haley Systems, Inc. 3

4 Educating HaleyAuthority ... 33
4.1 Scenario ... 33
4.2 Creating a new knowledgebase ... 33
4.3 Modules, statements, and applicability conditions.. 35

4.3.1 Adding a module ... 35
4.3.2 Adding a statement ... 36
4.3.3 Adding an entity and a noun phrase.. 37
4.3.4 Adding a verb phrase .. 40
4.3.5 Adding an applicability condition ... 47
4.3.6 Adding the person and smoker entities ... 47

4.4 A person’s age ... 53
4.4.1 Adding a value .. 56
4.4.2 theAgeOfAPerson ... 57
4.4.3 Creating a point-and-click statement ... 59

4.5 Hazardous occupations.. 60
4.5.1 Adding the entity occupation ... 60
4.5.2 Defining the relation an occupation is hazardous .. 61
4.5.3 Adding instances of an occupation.. 63
4.5.4 Adding a fact to an occupation instance.. 64
4.5.5 Adding the phrasing an occupation of a person .. 65

4.6 The applicant’s coverage and income.. 66
4.6.1 Adding the relation an application requests coverage for an amount of money 66
4.6.2 Adding the phrasing an income of a person .. 70

4.7 The applicant’s answers... 70
4.7.1 Adding the entities question, health question, and answer................................ 71
4.7.2 Adding instances of a health question and instances of an answer 71
4.7.3 Adding the relation aQuestionOnAnApplicationWasAnsweredWithAnAnswer .. 72

4.8 Height and weight limits ... 75
4.8.1 Adding the concepts body mass index, square, height, and weight 77

4.8.1.1 Body mass index and square .. 77
4.8.1.2 Height and weight ... 78

4.8.2 Adding the relations theHeightOfAPerson, theWeightOfAPerson,
theBodyMassIndexOfAPerson, and theSquareOfANumber 80
4.8.2.1 theHeightOfAPerson, theWeightOfAPerson, and

theBodyMassIndexOfAPerson.. 80
4.8.2.2 theSquareOfANumber... 81

4.9 Adding the Calculation Module... 82
4.10 Final disposition rules... 83
4.11 Scenario ... 86

5 Applying policy to test cases.. 88
5.1 Scenario ... 88

HaleyAuthority Tutorial

Haley Systems, Inc. 4

5.2 Applicant instances .. 88
5.2.1 John Doe... 88
5.2.2 Jane Doe... 92

5.3 Running a test case ... 93
5.3.1 Defining the test case.. 93
5.3.2 Trace messages.. 95
5.3.3 Deploying the logic for a test case... 95
5.3.4 Results of the test case ... 96

5.4 Scenario ... 99
5.5 HaleyAuthority and your business.. 100
www.haley.com
www.haley.com

1 Introduction to HaleyAuthority
Welcome to the HaleyAuthority Tutorial from Haley Systems, Inc.. This manual shows

you how to implement a small application-approval system using HaleyAuthority. The

example concerns the automated approval of life insurance applications from a Web site.

The early chapters explain concepts and best practices. The later chapters show how to

navigate the user interface to teach HaleyAuthority about your business. The final

chapter demonstrates how to run the resulting program and validate that it performed as

intended.

In this chapter, we introduce HaleyAuthority and a typical new-user scenario. We will

follow this scenario chapter-by-chapter as it unfolds.

1.1 Scenario

Michael Marks sat in the rear of the Friday morning meeting, hoping to be inconspicuous.

He was the new person in the Information Technology department, and was still learning

the jargon of the life insurance business. The head of IT was almost finished with his

PowerPoint proposal for the Web site update. The company CEO and his two vice

presidents didn’t look very happy.

 “Are you saying,” growled the CEO, “that this revision to the Automated Approval

Application is going to take half a year to implement?”

HaleyAuthority Tutorial

Haley Systems, Inc. 5

“At least,” replied the IT manager, shutting off the projector. “It will take four months to

write the code, and several weeks more to test and validate.” He sat down. “If you come

up with any new policies in the meantime, it will take even longer.”

“Why so much time?” demanded the CEO. “We need those new policies on line now. We

can’t stay competitive if our approval policies are months behind the market.”

“The AA Application is a very intricate business program,” replied IT. “It is an upgrade to

our original application triage program, which was written in Java and VBScript, and the

new policies have to be integrated with the existing ones. Adding new policies to a

decision tree is very error prone. It takes time.”

The CEO looked disgusted. “How long would it take to change just one guideline?” he

asked. “Suppose we need to change the minimum age of a male applicant? We need to

raise the minimum age from 18 years to 21 years, for men only. How long to implement a

change like that?”

“For men only?” The IT manager glanced around the room, getting estimates from his

engineers. “A week.” “Ten days.” “No, something would go wrong. Call it two weeks.”

“Don’t forget testing.”

“A month,” IT replied.

The CEO was incredulous. “A month? To change one guideline? How can it take that

long?” he demanded.

“Well, the code is pretty complex, and we’d have to find all the branch points where we

test for age and introduce new branches dependent on gender. I’m not sure if the code

checks for gender now. We would have to trace through the code to be sure that those

changes didn’t interfere with other policies. We’d have to run regression checks and track

down any change in behavior.” He spread his hands helplessly. “It is a non-trivial task.”

“Wait a minute,” said the CEO. “Why don’t we know if the code checks gender? Don’t we

know what this application does?”

“The prototype system was coded by a graduate student last summer,” explained an

engineer. “He went back to school. He didn’t comment the code.”

“You’re telling me that our automated approval software, which approves hundreds of

applications every day, is so complicated that we don’t really know what it does?” The

CEO had a dangerous look in his eye.

No one replied. The room was very quiet.

“And it would take weeks to change any part of it?” More silence.

HaleyAuthority Tutorial

Haley Systems, Inc. 6

The CEO became very serious. “The Board of Directors wants us to be up to date. They

want us reacting to the changing marketplace. They want us to be competitive, to adapt

quickly to changing business conditions.” He glared at the engineers. “There will be a

board meeting Monday. They will ask me how the AA Application is coming, and this isn’t

the story I want to tell them.”

The developers looked like a herd of deer caught in the headlights of a car.

The CEO slumped back in his chair. “Why can’t we just tell computers what to do in plain

English and have them do it?”

Mike started to speak and then caught himself. Too late. The CEO’s eyes snapped

around in Mike’s direction. “You’re the new guy, right? You have an idea?”

Mike swallowed. “Well, sir, I met a guy on a plane flight last week. He was very excited

about a business system you could program in plain English.” The CEO frowned but Mike

hurried on. “He just wouldn’t let go of it, and finally insisted on giving me a demo disk. I

still have the disk in my briefcase.”

“And?” inquired the CEO. Behind him, the head of IT was motioning to Mike to be quiet.

But Mike was trapped. “Well, I suppose it wouldn’t hurt to install it and try it out.”

The CEO never dithered. “Good. Try it this afternoon. Get some approval guidelines from

underwriting and see what you can do.”

1.2 Computers that hear and obey

Computers are appearing in every aspect of our daily lives. They organize our business

information, transmit our messages, modulate our music, diagnose our illnesses, predict

our weather, remind us of our anniversaries, and route our telephone calls to us. There

are computers in our offices, homes, automobiles, wristwatches, kitchen appliances and

even inside some of our credit cards. There may be a computer in your hip pocket at this

very moment.

How many of these computers understand us when we speak to them? Voice-recognition

has come a long way in the last few years. Anyone can purchase inexpensive voice-

recognition software that interprets spoken words into editable text with 95% accuracy.

You can say “Call home!” to your cellular phone, and it will usually dial your home rather

than someone else’s. Simple voice recognition is a reality. Suppose you were to turn to

your cellular phone and say, “Hold my calls for the next thirty minutes, unless it’s my

doctor.” How would your phone respond? Would it hold your calls? Would it screen them

as directed? No?

HaleyAuthority Tutorial

Haley Systems, Inc. 7

It isn’t a question of recognizing the words. The problem is the same when you type a

sentence directly into a field on a form. The computer “knows” exactly what you typed. It

does not know what you meant. It doesn’t understand.

The goal of Haley Systems, Inc. is to bridge this gap. Computers should hear and obey,

like the genie in Aladdin’s lamp. Aladdin conversed directly with the genie to make his

three wishes. The genie obeyed. If the genie had acted like an e-commerce Web server,

he would have dropped thirty pounds of software manuals in Aladdin’s lap and told him to

spend a year coding his first wish.

In the next few years it will become commonplace to speak directly to everyday devices

and appliances. We will be able to call them on the phone or send them email, and they

will respond intelligently to our instructions. We will ask the phone if we missed any

messages. We will ask our laptop the names of the prospects we visited yesterday. It will

answer. We will tell the laptop to send the prospects the usual follow-up letters. The

laptop will send the letters.

To make this possible, computers and humans will need to speak a common language.

The first such language will be English. HaleyAuthority is the application that proves this

dream is attainable. HaleyAuthority understands. It obeys.

Not “someday.” Today.

1.3 Advantages of HaleyAuthority

HaleyAuthority is the natural-language front-end to Eclipse, which itself is a product of 20

years of experience in commercial rule applications. Combining natural English

interpretation with rule-based systems gives HaleyAuthority all of the advantages of rules

without the cost of programming them. HaleyAuthority programs itself.

1.3.1 Advantage of rules

Modern business systems implement policies. An insurance or warranty system may

have to apply hundreds, even thousands, of individual guidelines to an endless stream of

incoming data. Traditional procedural languages, including those used in Web

applications, cannot meet this challenge in a flexible and timely manner.

The problem is flow of control. A traditional computer program takes the flow of control

down a single path, branching where needed, until it reaches a block of code that

performs some desired action. This approach is fine when the code has only a few

branches, but it becomes unmanageable if the system must make many branching

decisions.

HaleyAuthority Tutorial

Haley Systems, Inc. 8

For instance, suppose you have policies that apply ten independent yes/no decisions,

and then take some action. The developer implements the first decision and the code

takes two branches. If the second decision is independent of the first one, the

programmer may implement it twice (once on each branch) and suddenly there are four

branches. By the time the programmer gets to the tenth decision, the decision tree may

have over a thousand branches.

Admittedly, this example is unrealistic. System analysts make a living paring down

decision structures and combining branches to reduce needless repetition. They build

clever mechanisms to route the flow of control efficiently down the minimum number of

necessary paths. The resulting structure is more elegant and efficient, but it is difficult to

revise. Asking for a trivially small change to a decision system can be like asking your

mechanic to add ten more horsepower to your car’s 200-horsepower engine. That

sounds like a small change, but it requires rebuilding the whole engine.

There are often thousands of decisions to implement. Automobile manufacturers support

immense decision systems to approve or deny payment for warranty repairs. They

receive thousands of such requests every day from mechanics and dealers. Does the

warranty cover this part for this service on this model sold on this date in this state? Is the

warranty still in force? Is there any sign of fraud? Over the years, the number of potential

tests and decisions can become overwhelming. This is where rules come in.

A rule system avoids the flow-of-control tangle by using small, independent statements of

tests and actions (the rules). Because there is no overall flow of control, there is no

decision structure to maintain. Each policy is implemented as a single, separate,

independent rule. To add a new policy to the system, you write a single new rule. To

remove an old policy, you delete a rule. You can change a policy freely without fear of

damaging the rest of the program.

For instance, we might have a policy that detects when a life insurance applicant has

asked for too much coverage: “An application should be referred if the requested

coverage is more than 80% of the income.” As the subject-matter expert, you would just

type this policy directly into HaleyAuthority. The illustration below shows how

HaleyAuthority takes your statement and implements it as a rule in Eclipse.

HaleyAuthority Tutorial

Haley Systems, Inc. 9

Remember that you just type in the policy. HaleyAuthority creates the rest of the rule for

you. With HaleyAuthority, no one on your staff has to write this kind of code.

The conditions of the rule are listed above the inference arrow (=>), and the consequent

of the rule is below the arrow.

These few lines of code perform a real policy function, and can be added, modified or

removed without any effect on the rest of the system. You can change any policy without

redesigning the whole program. Suppose 200 actual horses, instead of a 200-

horsepower engine, pulled your car. Adding 10 more horses to the team would not be

difficult. You could make that change in a few minutes. Rules make that difference in a

decision system.

1.3.2 Advantage of natural language

We showed you that Eclipse rule to make an important point. The Eclipse code looks

quite complicated. No problem. With HaleyAuthority, you never have to write this kind of

code. You write a statement, which is a simple description of the rule in plain English.

HaleyAuthority creates the Eclipse code for you behind the scenes. It programs itself. For

instance, HaleyAuthority created that Eclipse rule from this statement and applicability

condition: Anyone can read this:

Learning to use HaleyAuthority involves a short initial investment of time on your part.

The HaleyAuthority Tutorial presents all of the necessary concepts and skills. Simply

HaleyAuthority Tutorial

Haley Systems, Inc. 10

follow along as Mike Marks builds his first HaleyAuthority prototype. Mike encounters

every situation that puzzles new users, and we have made sure that he finds the right

answers.

It takes a couple of hours to work through the example. It is time well spent, and you may

even enjoy it.

1.4 Haley Systems, Inc.

Haley Systems, Inc. has been the recognized global leader in rule-based programming,

as well as a leading expert in automating managed knowledge, since 1989. Founder Paul

Haley has been a leading figure in the commercialization of artificial intelligence for more

than 20 years.

Haley Systems, Inc. empowers business people to express, access, and maintain their

business knowledge, best practices, and policies in plain English sentences. Haley

System’s artificial intelligence (AI) embeds these sentences within and integrates them

with other information technology (IT) to automate their knowledge – without a software

development cycle. Solutions from Haley Systems, Inc. operate on the full range of

platforms, from mainframes to hand-helds.

Many of the world’s largest companies embed software from Haley Systems, Inc. in a

variety of commercial software packages and applications. Haley System's solutions are

used broadly in customer relationship management throughout the financial services and

telecommunications sectors, as well as other industries. Web applications using Haley

Systems’ multi-threaded server software execute business rules several times faster than

any alternative and with no discernable latency.

HaleyAuthority Tutorial

Haley Systems, Inc. 11

2 Managing policy with HaleyAuthority
HaleyAuthority provides a natural-language interface to Eclipse, the enterprise-class rule

engine from Haley Systems. HaleyAuthority lets your managers implement company

policy in a completely natural way, using simple English sentences. The policy makers do

not need to understand any of the underlying technology in order to exercise full and

immediate control over the system. A policy maker can literally edit a sentence, save it,

and see the system’s behavior change.

Before you reach that point, however, someone will have to prepare HaleyAuthority for

management’s policy input. We will call this person the knowledgebase administrator.

The administrator determines the general architecture of the system, and educates

HaleyAuthority about the words and phrases used in the local business environment. The

administrator does not need to understand HaleyAuthority’s underlying technology in

detail, but it is always helpful to have a general grasp of how the system works.

This chapter will give you some background about how HaleyAuthority operates. If you

have not worked with a rule-based system before, this chapter will help demystify the

technology. The material is not difficult, but it is different.

2.1 Scenario

Mike Marks returned to his office and located the HaleyAuthority demo disk. He called

Haley Systems for a temporary authorization code and opened the application. As he

expanded the nodes in the knowledge tree, he recalled Miss Higgenbottom’s sixth-grade

grammar class. Mike had been the kid who was good at science and math. He dreaded

the thought of revisiting basic grammar.

HaleyAuthority’s Dictionary folder contained nodes for nouns, verbs, adjectives, adverbs,

determiners, and prepositions. Mike remembered nouns, adjectives and verbs. They

were easy. He thought he remembered what prepositions were, but adverbs? They

ended in “ly,” didn’t they?

As he continued to explore HaleyAuthority, Mike made a list of other items he wasn’t sure

about. Entities? Relations? Phrasings? He tried to edit a phrasing and encountered

HaleyAuthority Tutorial

Haley Systems, Inc. 12

options for modals and auxiliaries. Either Miss Higgenbottom hadn’t mentioned those, or

Mike had been dozing when she did.

Mike spent a few minutes searching the Web for English grammar sites. He reacquainted

himself with nouns, adjectives, verbs, adverbs, determiners, prepositions and the other

basic parts of speech, but quickly discovered that relations, entities and phrasings were

not listed. He sighed in frustration and grimly opened the online help; Mike hated to read

documentation.

2.2 Grammar and linguistics

HaleyAuthority embodies a very sophisticated model of linguistic relationships. In fact,

HaleyAuthority knows quite a bit more about the structure of language than Miss

Higgenbottom did. This makes HaleyAuthority’s interpretation of English very powerful

(which means less work for the knowledgebase administrator).

HaleyAuthority cannot write a poem or a play, but it can follow directions written in clear,

unambiguous English. Before you can educate HaleyAuthority about the objects,

processes and jargon of a specific business, you need to refresh your memory of the

basic parts of speech and the roles they play in the construction of a typical sentence.

This section is a brief review of these concepts.

It seems that quite a few of us were dozing in class that day.

2.2.1 Parts of speech

Miss Higgenbottom may have learned the parts of speech as a little girl by memorizing

this Victorian rhyme:

Three little words we often see,

Determiners like a, an, and the.

A noun’s the name of anything,

A school or garden, hoop, or string.

An adjective tells the kind of noun,

Like great, small, pretty, white, or brown.

In place of nouns the pronouns stand,

John’s head, his face, my arm, your hand.

Verbs tell of something being done,

To read, write, count, sing, jump, or run.

How things are done the adverbs tell,

HaleyAuthority Tutorial

Haley Systems, Inc. 13

Like slowly, quickly, ill, or well.

A preposition stands before

A noun, as in a room or through a door.

Conjunctions join the nouns together,

Like boy or girl, wind and weather.

The interjection shows surprise,

Like Oh, how charming! Ah, how wise!

The whole are called nine parts of speech,

Which reading, writing, speaking teach.1

A Victorian child could earn a grade of 99% by reciting this poem correctly. The student

could then earn the final 1% of the grade by locating and correcting the subtle grammar

error in the poem. (We leave this as an exercise for the reader.) Those are the basic

parts of speech, just as we learned them in school. How does HaleyAuthority use them to

interpret sentences?

2.2.2 Grammatical roles in a sentence

The parts of speech play various grammatical roles when used in a sentence, just as

actors may play various roles when they appear on stage. A typical sentence offers a

predictable set of roles for the parts of speech to play. Most sentences have a verb, a

subject and a direct object, and there may also be complementary words and phrases.

In HaleyAuthority, the subject of a sentence is usually a noun. The subject of the

sentence is the person, place, thing, or idea that is doing or being something. The subject

always comes before the verb.

The applicant’s occupation is snake charmer.

It is tempting to think the sentence is talking about the applicant, but actually the subject

of the sentence is “occupation.”

A sentence always has a verb. In HaleyAuthority, this is often a form of the verb to be,

such as is, was, will be, or should be.

The applicant is 40 years old.

Some sentences tell a story. The subject tells you who did it. The verb tells you what

happened. The direct object tells you to whom or to what it happened. You usually find

the direct object right after the verb.

1 King, Graham, The Sunday Times Good Grammar in One Hour, Mandarin Paperbacks, London, 1993, p. 35.

HaleyAuthority Tutorial

Haley Systems, Inc. 14

Philip mailed a letter.

If a sentence has a direct object, then it might also have an indirect object. The indirect

object tells us to whom or for whom the action was directed. An indirect object usually

refers to a person; a preposition always introduces it.

Philip mailed a letter to Margaret.

Always? Well, no. People often reverse the position of the direct and indirect objects and

drop the preposition.

Philip mailed Margaret a letter.

This sentence really means “Philip mailed to Margaret a letter,” but that sounds awkward.

HaleyAuthority is aware of these variations in phrasing and adjusts for them

automatically. Variations such as this are routine.

A complement is a prepositional phrase that follows a noun or a verb. It often resembles

an indirect object, but it refers to an inanimate object rather than to a person or other

living thing.

John raced Howard in the pool. (Follows the noun “Howard.”).

A person resides in a country. (Follows the verb “resides.”)

When you define a phrasing in HaleyAuthority, you will identify the subject, the verb, and

the direct and indirect objects. Then you will attach any leftover words by identifying

which parts of the phrasing they complement. You will specify which word the

complementary phrase should follow in the phrasing.

Identifying the grammatical roles in a phrasing is very simple in most cases. The

challenge comes when we start to educate HaleyAuthority about the meaning of the

words.

2.3 Business concepts

To understand your business policies, HaleyAuthority needs to understand a few things

about your business. Understanding English is not enough. HaleyAuthority needs an

underlying model of your business objects, their attributes, and their relations to one

another.

For instance, you might write a statement that begins:

If an applicant’s age is more than 40 years…

To understand this phrase, HaleyAuthority needs to know that applicants exist, that

applicants are people, that people have ages, and that age is a number of years.

HaleyAuthority Tutorial

Haley Systems, Inc. 15

HaleyAuthority did not know these things when you installed it. Adding this type of

information is called semantic modeling. Semantic modeling lets you describe your

business objects using HaleyAuthority’s entities, values, and relations.

2.3.1 Entities

At the very top of the knowledge tree in HaleyAuthority’s Full View tab you will see a

node called Concepts:

The entity node contains complex objects (such as people), that have associated

attributes (such as age). Your business object model will be built of these entities. The

entity node is empty to begin with; you will populate it with your own entities.

For instance, we could say that a person is an entity and Jane Doe is an instance of a

person. Defining these entities creates the following concept tree in HaleyAuthority:

You can see that Jane Doe has several associated attributes, such as height, weight and

age. These are values associated with the person entity or the applicant entity by

relations.

2.3.2 Values

HaleyAuthority has built-in knowledge of many types of values. It is important to explore

the tree structures inside the value node to see what is available there. For instance, to

HaleyAuthority Tutorial

Haley Systems, Inc. 16

create a value for “age” we simply navigate to values expressed in “amount of time” and

add a new kind, called “age.”

Then we use the mouse to drag “age” up the screen and drop it on “person”. Instantly,

HaleyAuthority understands that “a person has an age,” and that we might be about to tell

it something about “the age of a person.”

As you might have guessed, entities and values have names, and the names are nouns.

Whenever you create a new entity or value, HaleyAuthority simultaneously creates the

necessary noun and adds it to the Dictionary node of the knowledge tree.

2.3.3 Relations

Relations connect values to entities, and connect entities to one another. The easy way

to understand a relation is to peek under the hood for a moment and see how the Eclipse

HaleyAuthority Tutorial

Haley Systems, Inc. 17

rule engine represents a fact. We know that John Doe is 56 years old. The corresponding

fact says:

(Person_age John_Doe 56 042)

In this simple statement, Person_age is the name of the relation. John_Doe is a symbol

representing the entity John Doe. The following number, 56, is the value of John’s age in

years. The second value, 042, indicates the unit of measurement, which is years. The

Person_age relation, therefore, is a package that always contains the name of an entity

(appearing in the semantic role of applicant) and a number (in the semantic role of age).

There might be hundreds of such facts available in Eclipse.

Now we will see how this same relation looks in HaleyAuthority. This is the initial screen

of the Add a relation modeling wizard. Notice that you get to name the relation yourself

in the top field of the box (theAgeOfAPerson). In the Roles section of the screen is a list

of concepts (entities and values) that participate in this relation. You can see that

theAgeOfAPerson relates the person entity to the age value. To define a relation, you

type in the new relation name and then select the entities and values from lists. It is very

simple.

There are quite a few pre-defined relations in HaleyAuthority, and you will undoubtedly

define many more of your own. Relations are perfectly simple except for one thing –

HaleyAuthority needs to know how the nouns, verbs and other parts of speech in a policy

statement will map into the semantic roles of the relation. To make this bridge each new

relation requires one or more phrasings.

HaleyAuthority Tutorial

Haley Systems, Inc. 18

2.3.4 Phrasings

Before HaleyAuthority can use a relation in a meaningful way, it needs one or more

examples showing how the relation is expressed in English sentences. These examples

are called “phrasings.” A typical verb phrasing has a subject, a verb, and a direct object,

as in “a person (subject) has (verb) an age (direct object).” The phrasing may also

contain other significant parts of speech such as adverbs, auxiliary verbs, and noun and

verb complements.

There are two types of phrasings in HaleyAuthority, noun phrasings and verb phrasings.

Noun phrasings in a relation usually indicate possessive or ownership, such as “a

person’s age”. Whereas verb phrasings always include a verb, “a person has an age”.

The relation listed above, theAgeOfAPerson, can be created via either a noun phrasing

or a verb phrasing. If created as a noun phrasing, you directly enter the phrasing for “an

age of a person”. With this phrasing HaleyAuthority will automatically understand that “a

person has an age”, “an age of a person”, and “a person’s age”.

For verb phrasings, we don’t just type in phrasings. Instead, we select the critical entities,

the values, and the verb from lists, and then have HaleyAuthority assemble them into the

desired phrase. HaleyAuthority performs a sanity-check by displaying the English

phrases it thinks we want. We often have to adjust our input to get the phrasing just right.

For the new user, there is a certain amount of trial-and-error to be expected.

HaleyAuthority Tutorial

Haley Systems, Inc. 19

This is a phrasing for the anApplicationOfAPerson relation. We see that the subject of

the phrasing is “a person.” The direct object is “an application.” The selected verb is

“submits.” HaleyAuthority takes these pieces and builds a suggested phrasings: “A

person does not submit an application,” “a person submits an application,” “an application

is submitted by a person,” and “an application is not submitted by a person.”

Once the phrasing is correct, HaleyAuthority will understand English references to the

objects in this relation, and may generalize in surprising ways. HaleyAuthority

automatically extends the language model in appropriate directions to create the greatest

unambiguous flexibility of expression. From the above phrasing, HaleyAuthority now

understands “a person submits an application,” and “an application is submitted by a

person.”

2.4 Statements and rules

Using entities, values, relations and phrasings, HaleyAuthority can take your statements

of company policy, written in English, and translate them into data-driven rules for the

Eclipse rule engine to execute. Incoming business data can be processed according to

company policy, and correct decisions can be made at high speed.

How does that work?

An Eclipse rule is a simple statement of conditions and consequences, similar to an

if/then sentence in English.

If <these conditions are met> then <perform these consequences>.

A statement in HaleyAuthority is the same idea expressed in English. HaleyAuthority

takes English statements and turns them into rules behind the scenes. The Eclipse rule

HaleyAuthority Tutorial

Haley Systems, Inc. 20

engine maintains a collection of “facts” about the current situation. We say that a rule

“fires” when all of its conditions are met by corresponding facts. A rule does nothing until

the right facts become available. Then it fires once for each set of matching facts.

When a rule fires, the rule engine executes the rule’s consequences. The consequences

may add or remove facts, or they may have side effects outside of Eclipse. Changes to

the collection of available facts may cause additional rules to fire, a process known as

chaining.

Let’s examine a simple example of data-driven chaining to see how a rule-based system

typically works.

This rule, “an applicant has a hazardous occupation,” does nothing as long as there are

no scuba-diving applicants, as defined by the condition. Then John Doe, a diver, applies

for insurance. Suddenly the system contains new facts about John Doe.

John Doe’s occupation is “scuba diver.” The rule about scuba divers matches this new

fact and fires. The result is the creation of a new fact; John Doe has a hazardous

occupation. There is another rule and condition in our system that is sensitive to

applicants who have hazardous occupations.

This rule notices that John Doe has a hazardous occupation. It fires and creates another

new fact; John Doe’s application should be referred.

There could be many rules that recognize situations where an application ought to be

referred. The rules react to the incoming facts about John Doe. Any rule that fires makes

a change in the collection of facts, adding a recommendation about how to handle John

Doe’s application. These rules develop our knowledge about John Doe, but have no side

effects outside of Eclipse.

Once the status of the application has been determined, action rules come into play.

They wait patiently and only fire after receiving the recommendations of the other rules.

Here are two action rules:

In our example, the second of these two rules would fire. Instead of creating a new fact,

this rule executes an external procedure that refers John Doe’s application to the

underwriting department.

HaleyAuthority Tutorial

Haley Systems, Inc. 21

Rule-based systems are very simple to create and maintain compared to the tangled

procedural code one usually finds in e-commerce applications. There may be hundreds

or thousands of rules in the system, but each one reacts independently to a specific

situation.

Every part of the system is as simple as “if/then.”

2.5 Scenario

Mike Marks was still a little doubtful. He could see how English sentences might map into

operations on his business objects, but it still seemed too good to be true. Every new

project had a hidden difficulty, and it was his job to find it. It would be better to find it early

rather than late.

What if the software really could understand policies written in plain English sentences?

That would be a great step forward, but there had to be a catch. Mike frowned and

reached for the company’s employee handbook. He turned to the new section on

vacation policy and read a few paragraphs. He smiled grimly and dropped the book in the

wastebasket. He had found the catch.

“Policy makers can’t write plain English,” he grumbled.

HaleyAuthority Tutorial

Haley Systems, Inc. 22

3 Writing policies clearly
HaleyAuthority can understand your policy instructions in plain English. The software is

very intelligent about exploiting the English language to create rules for the Eclipse rule

engine.

English, however, is often imprecise. Humans routinely apply common sense to

ambiguous sentences to determine their meaning, which is a level of reasoning that

computers have not yet achieved. Therefore, even though HaleyAuthority understands

your English statements, the statements must be written as plainly and clearly as

possible.

Most people are not accustomed to writing clear, unambiguous English. They rely instead

on the reader’s judgment. The knowledgebase administrator may need to do some

interpreting and rewriting before typing the statements into HaleyAuthority.

3.1 Scenario

Having determined that a rule-based system was a good choice for the proposed

Automated Application Approval system, Mike Marks went to visit the head of the

underwriting department, John Stevens, for some sample approval policies. Stevens was

able to quote a few guidelines from memory, but did not know the complete list. “I’ll have

one of my people send you the complete manual,” Stevens promised.

Mike returned to his office with his notes. Stevens had dictated a short list of application-

approval guidelines:

1. If the applicant’s age is less than 18 or more than 40 then refer him to underwriting.

2. Non-smokers are not usually referred to underwriting.

3. We do not refer applicants who don’t have hazardous occupations.

4. If the applicant’s coverage is less than 80% of his income then the policy might be

eligible.

5. If every health question on the application was answered “no” then the policy might

get automatic approval.

HaleyAuthority Tutorial

Haley Systems, Inc. 23

6. If the build table height and weight are within normal limits then the applicant might

be eligible.

Mike looked up from his notes and frowned. “Might be eligible?” he said.

3.2 Clarifying the statements

A computer requires simple, unambiguous instructions. The six policies stated above are

neither simple nor unambiguous. We need to analyze and simplify them before “teaching”

HaleyAuthority how to approve insurance applications.

Clarifying raw policies is an adventure in disciplined thinking. Always keep in mind that

the computer obeys your instructions literally. Therefore, you have to eliminate every

source of ambiguity in your statements.

3.2.1 Find the unstated assumptions

Human communication is full of implicit assumptions. For instance, you certainly noticed

some problems with the raw policies. Did you notice that there was no description of the

action the system is expected to perform? This is the first thing we need to know to build

a working system. What decision are we making here?

After you analyze the policies, it should be clear that the underwriters expect an

application to be approved unless the application violates one of their referral policies.

This is a critical rule that the policy makers left unstated.

A new application will be automatically approved, unless the application violates an

approval policy.

What should happen if the application violates a company policy? That is a second

hidden assumption, and completes the set of action rules for this simple system.

If an application violates a policy, then it will be referred to an underwriter.

These two statements are not in their final form yet, but we have them written down and

included in the list. We know now that the analysis of each application will end in an

approval or a referral.

We will set up the system so that these two action rules are prevented from firing until all

other rules have made their recommendations.

3.2.2 Identify the concepts

Each time the system runs, it will approve or refer a… what? Looking at the policy memo,

it seems that we might approve an “application,” an “applicant,” a “non-smoker,” or an

insurance “policy.” The author of the six statements was not very consistent.

HaleyAuthority Tutorial

Haley Systems, Inc. 24

You can educate HaleyAuthority to understand that an application, an applicant, a

smoker, and an insurance policy could all be names for the same approvable object, but

that isn’t the correct approach. It is better to give the approvable object a standard,

intuitive name. This makes it much easier for HaleyAuthority and the policy makers to

communicate clearly.

For instance, the AA Application system will approve or refer applications. It quickly

becomes apparent, however, that the approval policies all talk about applicants instead.

The policies refer to the applicant’s age, the applicant’s weight, the applicant’s salary,

and so forth. These are intuitive English phrases that appeal to the policy makers.

Therefore, the AA Application system will need to include an applicant concept and an

application concept, at a minimum.

All objects in the system need to have these intuitive labels. If the labels are awkward or

arbitrary, like the variables used in Java code, the policy makers will not be able to

interact with HaleyAuthority’s statements.

3.2.3 Minimize negative logic

HaleyAuthority understands “not” in a variety of contexts, but the overuse of negative

statements invites confusion between HaleyAuthority and the policy makers. Consider

this approval policy:

We do not refer applicants who don’t have hazardous occupations.

As it stands, the sentence implies that an applicant in a safe occupation will never be

referred to underwriting, no matter what else we might know about him. That can’t be

right. What did the policy’s author really intend? Let’s remove the negatives and rewrite

the sentence more clearly:

We refer applicants who have hazardous occupations.

This policy is much more clear, and doesn’t conceal an error in negative language. As a

rule of thumb, try to rewrite statements that have more than one “not” in them.

3.2.4 Investigate limits

Policy makers are often careless about expressing limits and ranges. For instance, let’s

look at this policy again. What does it really mean?

If the applicant’s age is less than 18 or more than 40 then refer him to underwriting.

A human reader might apply common sense and conclude that 18-year-olds should not

be referred, but 40-year-olds should be.

HaleyAuthority Tutorial

Haley Systems, Inc. 25

HaleyAuthority won’t see it that way. When the policy maker expresses a limit, always go

back and clarify the boundary conditions. In this case the policy maker intended to refer

applicants who were less than 18 years old, and also to refer applicants who were at

least 40 years old.

If an applicant’s age is less than 18 years or at least 40 years then refer him to

underwriting.

Make sure you know how the border cases should behave. HaleyAuthority will help by

automatically recognizing the phrases “less than,” “more than,” “at least,” “at most,” and

“equal to.”

3.2.5 Split or into multiple statements

If the conditions of the statement contain “OR,” you can reduce confusion by separating

the statement into two or more simpler statements. For instance, what if you encounter a

policy that looks like this one?

If an applicant has a hazardous occupation or the applicant's age is more than 40 then

refer him to underwriting.

This statement contains two policies masquerading as one. HaleyAuthority will insist that

you separate these independent “OR” conditions into two statements. Don’t be surprised

when you try to type “or” in a statement and HaleyAuthority won’t cooperate. An elegant

statement describes exactly one situation. We don’t want to try to code complex

conditional logic in English.

What about this statement then?

If an applicant’s age is less than 18 years or at least 40 years then refer him to

underwriting.

This isn’t quite the same thing. Technically this statement has a single condition that

contains multiple numeric tests on one parameter. We could split this statement into two

statements but it isn’t necessary. HaleyAuthority has no objection to “OR” in this context.

3.2.6 Minimize punctuation

HaleyAuthority isn’t interested in most punctuation marks. It doesn’t permit commas,

periods (full stops), or question marks in statements. However, parentheses are

permitted for use with mathematical operations.

HaleyAuthority does recognize the possessive apostrophe, however. Instead of saying,

If the age of an applicant is…

you can say,

HaleyAuthority Tutorial

Haley Systems, Inc. 26

If an applicant’s age is…

This is a very convenient feature that provides a natural way to express conditions based

on objects and their attributes.

3.2.7 Minimize plurals

Policy authors often use plural nouns unnecessarily. It is important to remember that

Eclipse rules generally match only one object at a time.

Therefore, we can avoid a source of confusion by stating our policies in terms of single,

discrete objects. For instance, there is no need to speak of multiple applicants and

occupations in this policy:

Refer applicants who have hazardous occupations.

This is better:

Refer an applicant who has a hazardous occupation.

Rules automatically evaluate all available matching objects, so you don’t have to insist

that a policy applies to all applicants. When you refer to “an applicant,” the rule will

evaluate every applicant it can find, but it will evaluate each one separately.

As another rule of thumb, avoid plurals unless the plural form is exactly what you mean

and the singular form just won’t do. This situation arises when you want to count the total

number of something. HaleyAuthority responds appropriately to a statement like this one:

If there are less than 10 passengers, then cancel the flight.

Counting “passengers” is a legitimate use of a plural noun in a statement.

3.2.8 Avoid mass nouns

HaleyAuthority wants to know how many, not how much. When you talk about items that

can be counted, you are using count nouns.

HaleyAuthority works well with objects that can be counted: one applicant, two

applicants; one policy, two policies.

A mass noun does not lend itself to counting. An example would be “coverage.” We don’t

say “one coverage, two coverages.” Instead we speak of “some” coverage. “Some” is too

vague for HaleyAuthority to understand.

Fortunately, mass nouns can be converted into count nouns by rephrasing to include

units, such as units of mass or volume. The mass noun “coverage” can by converted to a

count noun by speaking of an “amount of coverage,” (one amount, two amounts).

HaleyAuthority Tutorial

Haley Systems, Inc. 27

HaleyAuthority can work with that. Similarly, HaleyAuthority would prefer to deal with a

gallon of gasoline, a pound of butter, and a dollar of revenue.

Think of this as an ounce of prevention.

3.2.9 Avoid pronouns

Pronouns are the unbound variables of the English language: he, him, her, who, them,

they, it. When people read a sentence containing pronouns, they unconsciously make

assumptions about the meaning of each pronoun. Some of this interpretation is based on

common sense, which a computer does not share. For this reason, pronouns introduce

ambiguity.

Consider this sentence: “Bill insulted Phil, who scolded him.” The human reader uses

common sense to determine who was scolded.

The computer doesn’t have the background knowledge to decide who scolded whom.

For this reason, it is better to eliminate pronouns from your HaleyAuthority statements.

This one needs to be rewritten again:

Refer an applicant who has a hazardous occupation.

It is better to be explicit:

Refer an application if the occupation of the person who submits the application is

hazardous.

The sentence is not quite as graceful as before, but its meaning is crystal clear.

3.2.10 Using a, an, and the

HaleyAuthority pays close attention to the determiners, a, an, and the. It makes a special

distinction between a/an object and the object. This distinction leads to HaleyAuthority’s

most common beginner’s error.

 When you write a condition about a or an object, such as an application,

HaleyAuthority applies the statement to every available object of that type.

 If the condition mentions the object, such as the application, HaleyAuthority thinks

you mean one specific object, and you expect HaleyAuthority to know which one you

mean.

Generally speaking, it is good practice to phrase your HaleyAuthority statements like this:

If an applicant is a smoker then the applicant’s application should be referred.

HaleyAuthority Tutorial

Haley Systems, Inc. 28

This statement begins with “an” applicant, meaning the rule will match each available

applicant who is a smoker. Then it continues with “the” applicant, meaning that we are

still talking about the same applicant.

The rule will fire once for each smoker, referring each smoker individually to underwriting.

How is this version different?

If the applicant is a smoker then an applicant’s application should be referred.

HaleyAuthority won’t like this version of the statement for two reasons. First, the condition

mentions one specific applicant (the applicant) but does not say which one. Second, the

statement isn’t specific about which of many possible applicants (an applicant) should be

referred.

Under most circumstances, HaleyAuthority will refuse to accept this version of the

statement.

As we will see later in this tutorial, there is an exception. It is possible to tell

HaleyAuthority that the rules will never see more than one applicant and application at a

time. In that case, all references to “the applicant” or “an applicant” would always refer to

the same object.

This feature greatly simplifies the task of writing statements because it lets

HaleyAuthority relax its strict ambiguity checking. We refer to these unique objects as

“singleton” concepts.

What’s wrong with this statement?

If an applicant is a smoker and an applicant's age is more than 40 years then the

applicant’s application should be referred.

This rule will fire if any applicant is a smoker and, at the same time, that same applicant

or any other applicant is over 40 years of age.

Whose application should be referred? Do we know? HaleyAuthority doesn’t.

The best policy is to begin the statement by talking about a/an object, and then continue

with references to the object as long as you mean the same object as before.

If you need to write a statement about two different applicants, note that HaleyAuthority

understands references to “the first applicant” and “the second applicant.” This versatility

is built in. For instance, you could write a statement like this one:

if an applicant is a smoker and a second applicant is not a smoker then the first applicant

should go outside

HaleyAuthority Tutorial

Haley Systems, Inc. 29

3.2.11 Use present tense

To minimize confusion, make a habit of writing your HaleyAuthority statements in the

present tense. HaleyAuthority is aware of the differences among verb tenses, and casual

use of multiple tenses will force you to define multiple phrasings that do not add any

value to your system. You will do extra work for the same result. You are welcome to

introduce verb tenses if they are pertinent to the statements you need to define. The

present tense is simply the easiest to implement and causes fewer misunderstandings.

3.2.12 Minimize modal verbs

There is a world of difference between saying “refer the application” and saying “the

application should be referred.” One statement is an action. The other is just a

recommendation.

The modal verbs are the ones that say can, could, may, might, must, shall, should, will or

would. They introduce an intermediate level of truth into the system. This requires

additional rules to perform actions based on the accumulated modal information.

We will use a level of modal reasoning as we implement the AA Application system

because it is appropriate to the semantics of the application.

The rules in this example will recommend that an application “should” be referred to an

underwriter, but an action rule will perform the actual referral.

In general, however, casual use of modal verbs complicates your system without adding

any value. Keep them to a minimum.

3.2.13 Minimize then

We normally think of rules as if/then statements.

“If <these conditions are met>, then <perform some action>.”

HaleyAuthority understands your statements in the opposite order, too.

“<Perform some action> if <these conditions are met>.”

This format puts the “if” in the center of the statement and eliminates the “then.”

The difference between these two formats is largely a matter of style, because both

statements compile into the same rule in Eclipse. The second format, with “if” in the

center of the statement, has the virtue of alphabetizing similar consequences together in

a list of statements.

If you have many statements in a module, this can be a convenient convention. We will

take this approach in the following examples.

HaleyAuthority Tutorial

Haley Systems, Inc. 30

A more advanced approach is to use HaleyAuthority’s “applicability conditions” to provide

a more formal structure to your collection of statements. For instance, we could organize

multiple referral conditions into a single statement, like this:

This approach organizes and structures the knowledge formally, making it easier to

locate an existing statement or to determine that it does not exist in the system.

3.3 Scenario

Mike Marks looked at the revised approval policies on the monitor. It had taken him an

hour to simplify the underwriting guidelines to eliminate all ambiguity. He reviewed them

one at a time.

Original: if the applicant’s age is less than 18 or more than 40 then refer him to

underwriting

Revised: refer an application to underwriting if the applicant's age is less than 18 years

or is at least 40 years

The revised version is a little more precise.

Original: non-smokers should not to be referred to underwriting

Revised: refer an application if a smoker submits the application

The revised version eliminated the double negation:

Original: we do not refer applicants who don’t have hazardous occupations

Revised: refer an application if the occupation of the person who submits the application

is hazardous

The problem is, how do we know if the applicant has a hazardous occupation? It turned

out that underwriting had a list of hazardous occupations. Mike set it aside for later

attention.

The next policy had to do with the applicant’s requested coverage and income.

Original: if the applicant’s coverage is less than 80% of his income then the policy might

be eligible

HaleyAuthority Tutorial

Haley Systems, Inc. 31

Revised: refer an application if the applicant requests coverage for more than 80% of

the applicant’s income

The next policy turned out to be simple.

Original: if every health question on the application was answered ‘no’ then the policy

might be eligible for automatic approval

Revised: refer an application to underwriting if a health question on the application was

not answered with no

Mike had to spend some time on the final policy.

Original: if the build table height and weight are within normal limits then the applicant

might be eligible for automatic approval

He went back to the supervisor of the underwriting department to obtain the “build” table.

It was dated and contained many gaps. Rather than input the table into HaleyAuthority,

Mike dug a little deeper to find the formula the table was based on. The formula used the

applicant’s height and weight to calculate a score called the “body mass index.” A body

mass index score between 20 and 30 was acceptable.

Revised: refer an application if the applicant’s body mass index is not between 20 and

30

After some experimentation, Mike determined that HaleyAuthority could calculate the

body mass index using these two additional, simple rules:

a person's body mass index is the person's weight times 703 divided by the square of the

person's height

the square of the person’s height is the height times the height

The original six policies, when simplified and clarified, yielded eight statements. These

statements detect all situations that “should” result in referring the applicant to

underwriting.

Mike noted that six of the statements resulted in one action: refer the application.

Therefore, he regrouped the statements under the action to simplify the list:

An application should be referred if:

the applicant's age is less than 18 years or is at least 40 years

the applicant is a smoker

the occupation of the person who submits the application is hazardous

the applicant requests coverage for more than 80% of the applicant’s income

a health question on the application was not answered with no

HaleyAuthority Tutorial

Haley Systems, Inc. 32

the applicant’s body mass index is not between 20 and 30

Once these rules were done, however, Mike needed two action rules to finish up. These

rules would run at a lower priority than the others, to be sure they didn’t fire prematurely.

approve an application if the application should not be referred

if an application should be referred then refer the application to the Underwriting

Department

“Now,” Mike thought, “all I have to do is type these statements into HaleyAuthority and

I’m done.” He reached for the mouse and clicked the HaleyAuthority desktop icon…

HaleyAuthority Tutorial

Haley Systems, Inc. 33

4 Educating HaleyAuthority
This chapter presents a step-by-step illustration of a knowledgebase administrator

entering business policies into HaleyAuthority. It guides you through the details of

navigating HaleyAuthority, while demonstrating how to think about the tasks that present

themselves.

HaleyAuthority offers many powerful features and options, but you do not need to learn

them all to get started. The essential procedures are few, and you can master the

controls easily. The example really works; you can follow along if you wish.

When we finish this chapter, you will know how create statements with HaleyAuthority.

If you get lost at any point or need a reference while creating this example, a completed

version of the tutorial knowledgebase ships with your HaleyAuthority installation. This

example knowledgebase can be found under the Examples/Tutorial folder.

4.1 Scenario

Mike opened a knowledgebase in HaleyAuthority and picked up his list of proposed

statements. He looked from the list to the screen. How do you start? He hadn’t defined

any entities yet, so would HaleyAuthority even let him type in a statement? He started

expanding the various nodes of the tree to try to find out…

4.2 Creating a new knowledgebase

When you start experimenting with HaleyAuthority, it is a good idea to create a new,

empty knowledgebase. This eliminates the distractions and interactions of pre-existing

data, and avoids the problem of damaging someone else’s work. Run HaleyAuthority. If it

opens a knowledgebase automatically, use the File menu to Close that knowledgebase.

You want the empty HaleyAuthority window with no knowledgebase open.

Click File and New… to create a new knowledgebase. You will see this dialog:

HaleyAuthority Tutorial

Haley Systems, Inc. 34

The AKB Files tab refers to “HaleyAuthority Knowledge Base Files.” Type in the name of

the new file and click OK.

HaleyAuthority will use your Microsoft Windows user name as the default user name.

It takes a few seconds to initialize a new knowledgebase. When the data structures are in

place, HaleyAuthority looks like this:

You can see the main nodes of the knowledge tree in the upper left, and several tabs

along the bottom of the screen. The tabs provide an alternate means of navigating

HaleyAuthority, similar to opening nodes of the tree. For the purposes of this chapter, we

will stay in the Full View tab.

Now, where do we begin?

HaleyAuthority Tutorial

Haley Systems, Inc. 35

4.3 Modules, statements, and applicability conditions

Rules are entered as English “statements” in HaleyAuthority. Similar or related

statements are grouped into “modules.” You should think of modules as file folders, used

for organizing your collection of statements. Modules of statements can have higher or

lower priorities, can be turned on and off programmatically, and have other special

features that let you organize hierarchies of statements. For instance, modules can have

owners who control access to the module’s statements. You can move statements from

one module to another if you need to, just like moving files between folders.

4.3.1 Adding a module

In the present context, we need a module for the statements that will refer an applicant to

the underwriting department. Right-click the Modules & Statements node and select

Add a module…

Give the module an appropriate name, such as “Referral Module” and click OK. You can

change the name of the module later if you desire.

HaleyAuthority Tutorial

Haley Systems, Inc. 36

4.3.2 Adding a statement

The easiest place to start would be to tackle the statement and conditions that would

trigger the referral of an application.

We begin by just typing it in, but wait… Where do we type it in?

Right-click the new module node and select Add a statement…

The Edit statement dialog opens.

To enter the first statement, simply type the statement directly into the top field of the

Statement Dialog:

HaleyAuthority Tutorial

Haley Systems, Inc. 37

HaleyAuthority lets you type in the statement whether it understands you or not. This

means that you can type in your statements just as easily as writing email. Then the fun

begins. As the knowledgebase administrator, you have to be sure that HaleyAuthority

understands the new policy.

You will notice that the first word of the statement, “an,” appears in bold face. The next

word, “application,” appears in normal face.

Working from left to right, HaleyAuthority bolds as much of the sentence as it

understands, and then reverts to normal face when it encounters a difficulty. The first

difficulty is that HaleyAuthority doesn’t know what an “application” is. We’ll have to tell it.

Click OK to save the statement. We’ll come back to it in a minute.

By the way, in the list of statements, the icon S? means that this statement is a draft and

is not currently understood by HaleyAuthority. Statements understood by HaleyAuthority

are preceded with S, without the question mark.

4.3.3 Adding an entity and a noun phrase

We need to do a little “semantic modeling” to tell HaleyAuthority what an “application” is.

We don’t need to explain very much at this time, only that there is such a thing as an

application, and that we expect to see only one of them at a time.

What kind of object would an “application” be? The choices are “entity” or “value.” An

application is something important. It is likely to have characteristics. We intend to make

decisions about it. Clearly this is not a value, which is a single, labeled attribute like

“temperature.” Complex objects with multiple attributes are generally modeled as entities.

HaleyAuthority Tutorial

Haley Systems, Inc. 38

Open the Concepts node and right-click the entity node. Select Add > a kind of an
entity.

The Adding a phrase modeling wizard opens. You will use this modeling wizard to add

the noun and noun phrasing for “application.” Enter “the application” in the enter a noun
phrase that identifies the concept field and then click Next >.

The modeling wizard displays the Adding the noun 'application' screen.

HaleyAuthority Tutorial

Haley Systems, Inc. 39

While in this screen, you should experiment briefly with the Gender field. The gender of a

noun tells HaleyAuthority which pronouns might apply to it in a statement. Masculine

nouns are often associated with masculine pronouns such as “he,” “his,” and “him.”

Feminine nouns may be associated with “she” and “her.” Neuter nouns may be

referenced by impersonal pronouns such as “it,” “its,” “that” and “which.” The “personal”

gender is a special class where the noun refers to some living being of unknown sex.

HaleyAuthority associates this noun with pronouns such as “who,” “whom,” and “whose.”

If we used a pronoun to refer to an application, the pronoun would be “it” rather than “he,”

“she,” or “who.” Therefore, the gender of this noun is neuter. It is a count noun, and

HaleyAuthority has guessed the plural form correctly. Click Next >.

The modeling wizard displays the Updating the concept's properties screen. You do

not need to make any edits to this screen of the modeling wizard. In fact, you may

choose to have HaleyAuthority skip this screen for the duration of this HaleyAuthority

session by checking the never show concept properties. Click on the checkbox to

place a checkmark in the box and then click Next >.

HaleyAuthority Tutorial

Haley Systems, Inc. 40

The modeling wizard displays the Updating the concept's implementation screen.

HaleyAuthority allows a concept to be implemented by a template that links to an external

object, such as a Java class. You use this screen to specify the template. You do not

need to make any edits to this screen of the modeling wizard; “application” will not be

implemented by a template. In fact, you may choose to have HaleyAuthority skip this

screen for the duration of this HaleyAuthority session by checking the never show
concept implementation. Click on the checkbox to place a checkmark in the box and

then click Next >.

The modeling wizard closes and HaleyAuthority adds application to the entity node.

If you reopen our statement, you’ll see that we have made some progress.

an application should be referred

HaleyAuthority now knows what an application is. It seems puzzled about what “should

be referred” might mean.

4.3.4 Adding a verb phrase

How can we tell HaleyAuthority what “should be referred” means? Let’s look at the

statement again.

HaleyAuthority Tutorial

Haley Systems, Inc. 41

HaleyAuthority doesn’t understand that an “application” “should be referred.” This pattern

looks familiar. “Application” is the subject.

“Should be referred” is a verb (refer) using a modal (should) and an auxiliary (be). What

are we looking at here?

When there is a verb involved, you need to create a new relation. Right-click the

Relations node and Add a relation…

This opens the Updating the relation's roles and properties modeling wizard.

Start by typing in the name of the new relation. For this example, we can call it

“anApplicationShouldBeReferred”.

What entities are involved in this relationship? Actually there is only one entity, the

application. We need to add it to the empty list of concepts in the Roles section of the

screen. (This is actually a list of entities and values, which are both types of concepts.)

Click in the Roles section of the modeling wizard. The Edit role dialog opens. There

is nothing to do here yet, because first we have to Select… an existing concept.

Click Select…; the Specify concept dialog opens. Click [+] to expand the tree control so

that application is visible.

HaleyAuthority Tutorial

Haley Systems, Inc. 42

Select application and click OK.

This puts us back in the Edit role dialog, with application selected as the entity that

fulfills the new role of the relation. At this point we have to stop and answer four

questions:

 The relation is “application should be referred.” Must every application participate in

this relation? Clearly the answer is no. Some will not be referred.

 Does an application participate in at most one such relationship? It is a pretty simple

relationship, which makes a recommendation about only one application. The answer

is yes.

 Must every such relationship include an application? Yes. The relation would be

meaningless without an application.

 Is the result of the relation a function or predicate? No. A function returns a value,

such as the function we will define later to calculate the square of a number, as does

a predicate, which returns a value of true or false. anApplicationShouldBeReferred

will not return any value.

These questions detect differences in how the relation might be used. For instance, every

son has a father. Not every father has a son. A father may have many sons. A son has

exactly one father. HaleyAuthority needs this information in order to create Eclipse rule

patterns that will match a single fact only, or match one of many related facts, or that can

HaleyAuthority Tutorial

Haley Systems, Inc. 43

match facts containing varying numbers of optional entities and values. Answer the

questions one at a time and then click OK.

This takes us back to the modeling wizard. The Roles field now has an entry,

application. The other items on the line simply summarize the selections you made in

the previous dialog.

In this particular relation, applicant is the only entity or value involved. We don’t have to

add another role to this relation, so we can move on to creating a phrasing. In the future,

however, you can use the following buttons when working with the concepts list (and

similar lists in HaleyAuthority):

HaleyAuthority Tutorial

Haley Systems, Inc. 44

Button Action

Click to add a new concept

Click to edit the selected concept

Click to delete the selected concept

Click to move the selected concept up the list

Click to move the selected concept down the list

Click Next >. The Add relation screen of the modeling wizard opens. In this screen we

will select add verb phrasing, because we still need to add the verb phrasing for the

relation.

Click Next >. The Adding a phrasing for [relation_name] screen opens.

HaleyAuthority has correctly guessed that the application is the subject of the phrasing,

but it isn’t sure what comes next. What are we trying to say? “An application should be

referred.”

At this point, you should explore the lists in the upper left corner of the dialog. You’ll find

modal verbs, adverbs, auxiliary verbs, verbs, and adjectives. There are New… buttons

next to some of the lists to let you create a new verb or modifier if you need one.

We can get most of the way just by shopping through the lists. Select “should” from the

list of modals, and “be” from the list of auxiliaries. The missing word, “referred,” is a verb.

HaleyAuthority Tutorial

Haley Systems, Inc. 45

We don’t find referred in the list of verbs, so we’ll have to create it. Click the New…
button for verbs. This brings up the Verb dialog, which is pretty simple.

Type refer into the Singular field, and then check the other fields to see if HaleyAuthority

has filled them in correctly. If it has, click OK.

We are back in the modeling wizard. Look at the Phrasings section. Are the phrasings

correct now? An applicant should be referring? Pull down the list of verbs and find

referred and select it. Now the phrasing reads, An applicant should be referred. Now the

phrasing is correct. Click Next >.

HaleyAuthority Tutorial

Haley Systems, Inc. 46

This closes the modeling wizard (it closes now if you selected the options to not display

concept properties and concept implementation during this HaleyAuthority session;

otherwise, click Next > twice to close the modeling wizard). The new relation is added to

the Relations & Procedures node.

Note that HaleyAuthority lists the phrasings and roles in the relation beneath the relation

in the tree.

When we check our draft statement, we see that HaleyAuthority has made tremendous

progress in understanding our intent:

an application should be referred

Click OK to save the statement as understood and close the Edit sentence dialog.

HaleyAuthority Tutorial

Haley Systems, Inc. 47

HaleyAuthority understands about an “application” and about “referring an application”.

Now we are ready to add the conditions to the statement.

4.3.5 Adding an applicability condition

The first applicability condition we will add is:

if a smoker submits the application

Right-click on the statement to which we are going to add a condition, refer an
application, and select Is applicable > if… from the menu.

The Edit statement dialog opens. Enter the condition:

a smoker submits the application

HaleyAuthority understands only “a”, we will have to define the entities “smoker” and the

verb phrase “a smoker submits the application”. (Do not enter the words if, only if, or

unless in conditions; HaleyAuthority will automatically add the conditions.)

4.3.6 Adding the person and smoker entities

We need to tell HaleyAuthority what a “smoker” is. Be sure to think in terms of single

objects. Define “a smoker”, not “smokers”. In the case of our insurance approval

application, a smoker is a person who smokes and a person who submits an application.

Smoker will be an entity, listed under the entity node of the knowledge tree. That much is

clear.

HaleyAuthority Tutorial

Haley Systems, Inc. 48

But a smoker is a person that submits an application. Because an applicant does not

have any characteristics of its own, we would define the entity "person" and define the

relation that "a person submits an application". By defining the noun phrase "the

applicant of an application" for the "person" role of the relation, Authority understands that

an applicant is a person who submits an application.

The first step is to tell HaleyAuthority that a “person” is a type of entity.

Right-click the entity node and follow the cascading menus to Add > a kind of an
entity… The Adding a phrase modeling wizard opens. Type the noun phrase for the

new entity, “the person”, in the enter a noun phrase that identifies the concept field

and then click Next >. The Adding the noun [noun_name] screen opens.

Do a quick sanity-check on the plural and phrasings fields. The proper plural of “person”

is “persons,” which is a count noun. You can count persons, as you see in the Phrasings

field.2

For the noun “person,” the personal gender seems appropriate. If we were to use a

pronoun to refer to a person, we would say “a person who…”

When everything looks correct, click Next >. The modeling wizard closes and

HaleyAuthority adds person to the Concepts node.

2 Used as a plural, “people” is a mass noun (some people) that has no exactly corresponding singular form. You may use
it as the plural of “person” if you wish.

HaleyAuthority Tutorial

Haley Systems, Inc. 49

Now HaleyAuthority understands that a person is a concept. The C icon indicates a

concept, by the way. That wasn’t so hard. Now let’s create a “smoker”, who is a kind of a

person.

Right-click person and Add > a kind of a person… The Adding a phrase modeling

wizard opens. Type the noun phrase for the new entity, “the smoker”, in the enter a noun
phrase that identifies the concept field and then click Next >. The Adding the noun
[noun_name] screen opens.

Do a quick sanity-check on the plural and phrasings fields. The proper plural of “smoker”

is “smokers,” which is a count noun. You can count “smokers”, as you see in the

Phrasings field.

For the noun “smoker”, the personal gender seems appropriate. If we were to use a

pronoun to refer to a smoker, we would say “a smoker who…”

When everything looks correct, click Next >. The modeling wizard closes and

HaleyAuthority adds smoker to the Concepts node.

Let’s check our condition. HaleyAuthority now understands smoker.

a smoker submits the application

We have already defined the entity application; our next step is to create a relation, a

smoker submits the application. Because a smoker is a kind of person, we will use the

generalization of smoker, which is person, to create the phrasing a person submits the

application.

Click on application to select it and then drag it and drop it on person.

HaleyAuthority Tutorial

Haley Systems, Inc. 50

The Updating the relation's roles and properties modeling wizard opens.

HaleyAuthority has already listed the two concepts in the relation, application and

person, in the Roles section of the wizard.

Type the name of the relation, anApplicationOfAPerson, in the Name field. Before we

move on to define the phrasing, we must first check the properties of the concepts.

Double-click on person in the Roles section. The Edit role dialog opens. Review the

four properties questions:

 The relation is “a person submits an application.” Must every person participate in

this relation? Clearly the answer is no. Not every person submits an application.

 Does a person participate in at most one such relationship? No, a person may submit

several applications.

 Must every such relationship include an person? Yes. The relation would be

meaningless without a person.

 Is the result of the relation a function or predicate? Both functions and predicates

return a result. anApplicationOfAPerson will not return a result.

The properties for person are correct as is; click OK to close the Edit role dialog.

Now repeat the same process for the concept application (double-click on application

in the Roles section; the Edit role dialog opens). Review the four properties questions:

 The relation is “a person submits an application.” Must every application participate in

this relation? Yes. Every application must be submitted by a person.

 Does an application participate in at most one such relationship? Yes, an application

is submitted by only one person.

 Must every such relationship include an application? Yes. The relation would be

meaningless without an application.

 Is the result of the relation a function or predicate? Both functions and predicates

return a result. anApplicationOfAPerson will not return a result.

Edit the properties of application and then click OK to close the Edit role dialog.

HaleyAuthority Tutorial

Haley Systems, Inc. 51

Click Next > to go to the next screen of the modeling wizard. The Adding a relation
between a [concept_name1] and [concept_name2] screen opens. Select the add
verb phrasing option and click Next >. The Adding a phrasing for [relation_name]
screen opens.

HaleyAuthority has placed person in the role of the subject and application in the direct

object role (see the Roles in phrasing section of the modeling wizard), resulting in the

phrasings:

 a person does not have an application

 a person has an application

HaleyAuthority assigns the roles to the concepts according to the order in which you

dragged and dropped them. Because you dropped application on person,

HaleyAuthority placed person in the role of the subject and application in the direct object

HaleyAuthority Tutorial

Haley Systems, Inc. 52

role. Had you done the reverse, that is, dropped person on application, HaleyAuthority

would have put application in the subject role and person in the direct object role. This

would have resulted in the following phrasing:

 an application does not have a person

 an application has a person

If you inadvertently dropped the concepts in the wrong order, you can easily change the

roles of the concepts by double-clicking on the concept in the Roles in phrasing section

of the dialog to open the Edit grammatical role dialog. From this dialog, you can change

the role of the concept in the relation.

But we will not need to edit the roles of the concepts for our example, we simply need to

change the verb from has to submits.

Click on the Verb list to display the list of verbs in the HaleyAuthority dictionary – both

built-in verbs and any verbs added by users. As you scroll through the list, you will find

that submits, or any variation of submit, is not in HaleyAuthority’s dictionary. So you will

have to add it.

Click on New… next to the Verb list. The Verb dialog opens. Type submit in the Base
form field. HaleyAuthority will guess the other verb forms and enter them in the

appropriate field. Review the other verb forms, as well as the sentences listed in the

Sentences field, and edit the verb forms as needed. Click OK to close the Verb dialog.

Submits is entered in the Verb field. Check the phrasings; our phrasings are now as

follows:

 a person does not submit an application

 a person submits an application

 an application is submitted by a person

 an application is not submitted by a person

Our phrasings are correct, so click Next >. The modeling wizard closes and the new

relation is listed in the Relations node.

Let’s check the condition again to see if HaleyAuthority understands it:

HaleyAuthority Tutorial

Haley Systems, Inc. 53

a smoker submits the application

HaleyAuthority does understand. Now we are ready to add the next condition.

4.4 A person’s age

Let’s turn our attention to the condition that limits the applicant’s age:

an application should be referred if:

the application’s applicant's age is less than 18 years or is at least 40 years

Looking at this statement, can you predict how much HaleyAuthority will understand?

One problem that is immediately apparent is that HaleyAuthority doesn’t know what an

applicant is. That situation is easily remedied, but a more significant issue, remains. Does

HaleyAuthority understand the relationship between the applicant in the condition and the

application in the statement? If you think about it, we haven’t told HaleyAuthority that an

application has an applicant, nor have we told it that an applicant has an age. Therefore,

when we refer to the applicant’s age being a condition for referring the application, we are

asking HaleyAuthority act on a relation that has yet to be defined.

Before we deal with this issue, let’s quickly add the entity applicant. As was the case

when we defined smoker, applicant is a kind of person. Therefore, right-click on person

and choose Add a kind of person… from the menu. The Adding a phrase modeling

wizard opens. Type in the noun phrase the applicant in the enter noun phrase that
identifies the concept field. Click Next >. The Adding the noun [noun_name] screen

is displayed.

HaleyAuthority has entered default settings for applicant. Because an applicant is also a

person, it is appropriate to select the personal gender. The rest of the default values pass

the sanity check, so click Next >. The modeling wizard closes and applicant is added to

the entity node.

Now let’s return to the phrasing of the condition and the relation between applicant and

application. Now that HaleyAuthority knows about applicants and applications, we can

tie the two concepts together with a phrasing.

HaleyAuthority Tutorial

Haley Systems, Inc. 54

Right-click on the relation anApplicationOfAPerson and select Properties… from the

menu.

The Properties of relation dialog opens. Click on the Phrasings tab to bring the tab to

the front. When we originally created the relation, we gave it the verb phrasing a person

submits an application, which is listed on the Phrasings tab. Now we will add a noun

phrasing, an applicant of an application.

On the Phrasings tab, click . The Adding a phrasing for [relation_name] modeling

wizard opens. HaleyAuthority has already made a guess at the phrasing and has entered

an application of a person in the noun phrasing field. But we are attempting to create a

phrasing that relates applicant and application, so instead of the default phrasing, enter

an applicant of an application in the field. Click Next >. The modeling wizard closes and

the new noun phrasing, an applicant of an application, is listed in the Phrasings tab.

HaleyAuthority Tutorial

Haley Systems, Inc. 55

Click OK to close the dialog.

To understand what we have done, let’s review:

 An applicant is a kind of a person that submits an application.

 We defined the entity person.

 We defined the entity applicant, which is a specialization of person.

 An applicant does not have any characteristics of its own, but it inherits

characteristics from the generalization person.

 We defined the relation a person submits an application.

 We defined the noun phrase an applicant of an application for the person role of the

relation.

 HaleyAuthority now understands that an applicant is a person that submits an

application.

Now that we have completed the noun phrasing, we can take advantage of the new

phrasing and revise the condition so that HaleyAuthority understands it. Right-click on the

statement an application should be referred and select Is applicable if… from the menu.

The Edit sentence dialog opens. Enter the following condition:

the application's applicant's age is less than 18 years or is at least 40 years

HaleyAuthority Tutorial

Haley Systems, Inc. 56

The bold highlighting ends in the middle of the possessive phrase applicant’s age.

HaleyAuthority can’t make sense of applicant’s because it doesn’t know that an applicant

can have attributes. It also doesn’t know what an age is.

We’re going to have to define age, and then let HaleyAuthority know that a person has an

age. HaleyAuthority will automatically generalize this relation and discover that an

applicant has an age, too.

4.4.1 Adding a value

Would age be an entity or a value? An entity has characteristics, like height, weight, cost,

and color. Age is a label on a single numeric value. Age is a value.

To define age properly, we are going to dive pretty deeply into the Concepts tree. First

let’s look at the kinds of values that are available.

The entries for date, specific day, and time of day look enticing, but in fact age is a

quantity of time. Expand the quantity node and see what is inside it. Age is an amount;
open the amount node. The amount node lists duration, amount of time, which is the

appropriate concept for age.

Age is an amount of time. Let’s add age as a duration, amount of time. Right-click on

duration, amount of time and select Add a kind of duration… The Adding a phrase
modeling wizard opens.

HaleyAuthority Tutorial

Haley Systems, Inc. 57

Type in an age in the enter a noun phrase that identifies the concept field and then

click Next >. The Adding the noun [noun_name] screen opens. Check the plural and

phrasings. If they make sense, click OK. That’s all there is to it, with the exception of

confirming the units associated with age.

What are the different units that can be used to measure time? seconds, minutes, hours,

days, weeks, months, and years, just to name a few. But what unit of time do we

associate with age in particular? We measure age in years. We need to make sure that

years is the unit associated with age. To do so, we need to look at the Properties dialog

for age.

Right-click on age and select Properties… from the menu. The Properties of concept
dialog opens, with the Concept tab displayed by default. Look at the Default Unit field;

the default unit associated with age is seconds. Select years from the list and click OK to

close the dialog.

Now HaleyAuthority will measure age in years.

4.4.2 theAgeOfAPerson

Now that HaleyAuthority knows what an age is, we have to explain that a person has an

age. Use the mouse to drag the age value up the tree and drop it on the person entity.

The tree pane will help by scrolling automatically.

HaleyAuthority Tutorial

Haley Systems, Inc. 58

Dropping age on person tells HaleyAuthority that age is an attribute of person.

HaleyAuthority responds by opening the Updating a relation’s roles and properties

modeling wizard. In the Roles section of the screen, double-click on person to open the

Edit roles dialog. Edit the properties of the role person to reflect that:

 every person must participate in one such relationship

 a person participates in at most one such relationship

 every such relationship must have a person

Click OK to close the Edit role dialog and then repeat the same steps to edit the age

concept. The age concept, however, has only one role property: every such relationship

must have an age. You will note that the default properties for age are correct, so you

can close the Edit roles dialog. Click Next > on the modeling wizard screen. The Adding
a relation screen opens.

Enter the noun phrase, the age of a person, in the add noun phrasing field and then

click Next >. The modeling wizard closes and the relation, APersonHasAnAge, is added

to the Relations & Procedures node.

HaleyAuthority knows what an age is, and it knows that a person has an age. Let’s go

check that incomplete statement about the applicant’s age.

When we open the Edit condition dialog, we can see at a glance that we are done.

the application's applicant's age is less than 18 years or is at least 40 years

HaleyAuthority Tutorial

Haley Systems, Inc. 59

HaleyAuthority understands the complete statement. Click OK to save the condition as

understood and to close the dialog.

4.4.3 Creating a point-and-click statement

We’re going to digress for a moment to show you one of HaleyAuthority’s most

impressive features. When you create a statement, HaleyAuthority actually predicts what

you are about to type next. You can access these predictions as cascading menus in the

Edit statement and Edit condition dialogs.

Open the Edit statement dialog, but don’t type anything into it. Instead, right-click the

mouse anywhere in the dialog. This opens a waterfall of cascading menus. You can roll

the mouse along the menus and build any statement that HaleyAuthority knows how to

interpret.

For example, the cascading menus can take you quite far without typing a keystroke:

When HaleyAuthority is unable to predict the next correct word in the sentence, click on

the final correct word on the menus; HaleyAuthority closes the cascading menus and

enters the portion of the statement that you selected from the cascading menus into the

HaleyAuthority Tutorial

Haley Systems, Inc. 60

Sentence field. Click in the Sentence field and type any additional words that are

necessary to complete the sentence.

The cascading menus are efficient, but that is not their real value. They show you all of

the words and phrases HaleyAuthority knows how to interpret that you didn’t have to

create yourself. You can also see these options in the Words field in the lower left corner

of the Edit statement and Edit condition dialogs. HaleyAuthority has a great deal of

built-in knowledge. That is where its true power lies.

4.5 Hazardous occupations

The next condition to add to the statement an application should be referred if is:

the occupation of the person who submits the application is hazardous

After you add the condition, you will need to do the following so that HaleyAuthority can

understand the condition:

 Add the entity occupation

 Define a relation, an occupation is hazardous

 Add instances of occupations (both hazardous and non-hazardous)

 Add the fact that an occupation is hazardous to those occupation instances that are

determined to be hazardous

 Define a relation that links applicant to occupation – an occupation of a person

4.5.1 Adding the entity occupation

There might be many possible types of occupations, and each might have various

attributes. Clearly, an occupation is not simply a value, so it must be an entity. Right-click

on the entity node, and select Add a kind of an entity… This opens the Adding a
phrasing modeling wizard. Type the noun phrasing of the entity, an occupation, in the

enter a noun phrase that identifies the concept field. Click Next >. The Adding the
noun [noun_name] screen opens.

Verify that the plural form of occupation is correct (occupations), the attributes are correct

(count noun), the gender is correct (neuter), and the phrasings are correct (1 occupation,

2 occupations...). The default settings should be correct. Click Next >. The modeling

wizard closes and HaleyAuthority adds occupation to the entity node.

HaleyAuthority Tutorial

Haley Systems, Inc. 61

4.5.2 Defining the relation an occupation is hazardous

Now we will define the relation, an occupation is hazardous. This relation will allow us to

signify which of the occupation instances (which we will add next) are hazardous.

Right-click on occupation and select Add a relation involving an occupation… from

the menu. The Updating the relation's roles and properties modeling wizard opens.

We will call the relation anOccupationIsHazardous; type that name in the Name field. If

you look at the Roles section of the wizard, you see that there is only one role in this

relation – occupation. Let’s take a look at the properties of the concept. Double-click on

occupation or select occupation and click to open the Edit role dialog.

The default property for occupation within the relation anOccupationIsHazardous is that

every such relation must have an occupation. That makes senses, doesn’t it? As we

discussed earlier, occupation is the only concept in the relation, therefore the relation

obviously requires the inclusion of occupation.

We also want to choose another property option for the relation, as well. Check the an
occupation participates in at most one such relationship option. Therefore,

occupation is unique. This means that if an occupation is hazardous, it is always

hazardous. For example, if the instance of an occupation is snake charmer, and snake

charmer has the phrasing, an occupation is hazardous, then any applicant that has the

occupation of snake charmer will be considered by HaleyAuthority to be a person with a

hazardous occupation.

Click OK to close the Edit role dialog and to return to the modeling wizard. Click Next >.

The Adding a relation… screen opens. We want to add the verb phrasing an occupation

is hazardous, so select the add verb phrasing option and click Next >. The Adding a
phrasing… screen opens.

If you look in the Phrasings section, you see the default phrasings are:

 an occupation has

 an occupation does not have

The first thing we need to do is to change the verb from has to is. Select is from the Verb

list and then check the phrasings again. Now the phrasings are:

 an occupation is

 an occupation is not

Now all we need to do is to add hazardous to the phrasing and we will be done.

HaleyAuthority Tutorial

Haley Systems, Inc. 62

What is hazardous? It is an adjective that modifies occupation – a hazardous occupation.

Look at the Adjective list and see if hazardous is already in HaleyAuthority’s dictionary.

No, it is not, so we can add the word from within this modeling wizard by clicking New…

next to the Adjective list. The Adjective dialog opens.

Type hazardous in the Adjective field. Now we need to answer some questions about

the adjective:

 Is hazardous attributive? Can you use it in front of a noun? Yes, you can – a

hazardous occupation. Therefore, you should place a checkmark in the Attributive

option.

 Is hazardous gradable? Can you precede it with very? Yes, something can be very

hazardous. Therefore, you should place a checkmark in the Gradable option.

Because you selected the Gradable option, HaleyAuthority makes a guess as to what

hazardous would be in the comparative (-er) form: hazardouser. That is obviously

incorrect; hazardous does not have a comparative form (instead, we would speak of

something being more hazardous), so delete hazardouser from the Comparative form

field.

HaleyAuthority also makes a guess at to what hazardous would be in the superlative

(-est) form: hazardousest. Again, that is obviously incorrect; hazardous does not have a

superlative form (instead, we would speak of something being most hazardous), so

delete hazardousest from the Superlative form field. Click OK to save the new adjective

and close the Adjective dialog. Back in the modeling wizard, we see that hazardous is

now the selected adjective.

Let’s check the phrasings one last time:

 an occupation is hazardous

 an occupation is not hazardous

Our phrasings are correct. Click Next >. The modeling wizard closes, and occupation

now has the new phrasing: an occupation is hazardous.

HaleyAuthority Tutorial

Haley Systems, Inc. 63

4.5.3 Adding instances of an occupation

How do we know that an applicant has a hazardous occupation? In a real application, we

might know this in a dozen ways, but let’s just give HaleyAuthority some examples of

hazardous and non-hazardous occupations to use as a guide.

The first step is to create a few occupations, hazardous and otherwise. We do this by

defining instances of the appropriate entities.

An instance is a specific example of an entity; firefighter is a specific example from the

class of occupations. To create these instances, right-click occupation and select Add an
instance… from the menu.

The Instance dialog opens. Type the name of the instance (in this case, type firefighter,

in the Label field and then click OK to close the dialog. The instance is added to the

entity in the tree, preceded with the I icon, which indicates an instance. You will add the

following occupations: firefighter, lawyer, pharmacist, scuba diver, snake charmer, and

used car salesman.

HaleyAuthority Tutorial

Haley Systems, Inc. 64

4.5.4 Adding a fact to an occupation instance

How will HaleyAuthority know that an occupation is hazardous? We will tell

HaleyAuthority by adding a fact, an occupation is hazardous, to those occupations

deemed hazardous.

Right-click on an instance of an occupation that is hazardous. In our example, hazardous

occupations are firefighter, scuba diver, and snake charmer. Select Properties… from

the menu. The Properties of instance dialog opens, with the Instance tab displayed by

default. Click on the Facts tab to bring it to the front of the dialog.

We want to add a fact, so click . The Select Phrasing dialog opens, it shows two

facts they you can assign to the instance:

Select the phrasing an occupation is hazardous and then click OK to close the dialog.

The new phrasing is listed in the Instance tab.

Click OK to close the dialog. The new fact is listed in the tree:

HaleyAuthority Tutorial

Haley Systems, Inc. 65

Now add the an occupation is hazardous fact to the remaining hazardous occupations.

4.5.5 Adding the phrasing an occupation of a person

HaleyAuthority understands about persons and applicants. It understands about

occupations and hazardous occupations. The next step is to tell HaleyAuthority about the

occupation of a person. Once HaleyAuthority understands that a person has an

occupation, it will automatically generalize to all types of persons, and to all types of

occupations.

How difficult is it to tell HaleyAuthority about an occupation of a person? All you do is

drag occupation down the tree and drop it on person. The Updating the relation's
roles and properties modeling wizard opens. Type the name of the new relation,

anOccupationOfAPerson, in the Name dialog. The default properties of the roles,

occupation and person, do not need to be edited, so click Next >.

The Adding a relation… screen opens, with the phrasing an occupation of a person

entered in the add noun phrasing field. Accept the noun phrasing and then click Next >.

The modeling wizard closes and the noun phrasing is added to the tree.

Now HaleyAuthority knows that a person can have an occupation, and it also knows that

an applicant can have a hazardous occupation.

Let’s check the condition and see if HaleyAuthority now understands everything it needs

to know about hazardous occupations:

the occupation of the person who submits the application is hazardous

Yes, HaleyAuthority does understand hazardous occupations. Notice how HaleyAuthority

generalizes behind the scenes. We told it a person has an occupation. We told it that an

applicant is a person. We defined occupation and appended a fact to hazardous

occupations that told HaleyAuthority that particular occupations are hazardous.

At this point we discover that HaleyAuthority is completely comfortable with the phrase,

the occupation of the person who submits the application is hazardous. It knows exactly

what we mean.

HaleyAuthority Tutorial

Haley Systems, Inc. 66

4.6 The applicant’s coverage and income

The next condition states that an application should be referred if the application requests

coverage for more than 80% of the income of the application's applicant.

First, we will type the statement into the Edit condition dialog to see how much

HaleyAuthority understands:

the application requests coverage for more than 80% of the income of the application's

applicant

It doesn’t appear to understand too much at this point, but that is easily remedied. We

will:

 Add the relation anApplicationRequestsAnAmountOfMoneyInCoverage that relates

the concepts amount of money (because coverage is an amount of money) and an

application

 Add the relation aPersonEarnsAnAmountOfMoney that relates the concepts amount

of money (because income is an amount of money) and a person.

 Add the noun phrasing the requested coverage of an application

4.6.1 Adding the relation an application requests coverage for an amount of money

We speak of coverage as the name of a single number representing an amount of

money. Navigate into the quantity tree, looking for an amount expressed as an amount

of money. When you find it, drag it and drop it on the entity application.

HaleyAuthority Tutorial

Haley Systems, Inc. 67

The Updating the relation's roles and properties modeling wizard opens. Type the

relation name in the Name field, such as,

anApplicationRequestsAnAmountOfMoneyInCoverage.

We need to change some properties for application, so in the Roles section of the

screen, double-click on application to open the Edit role dialog. By default,

HaleyAuthority has checked the option every such relationship must have an
application. This makes sense, because it is in the application that the applicant

requests an amount of coverage. We also want to check the every application must
participate in a least one such relationship option, because we are requiring that

every application include a request for an amount of coverage. Finally, we want to check

the option an application participates in at most one such relationship. There will be

only one application per request for an amount of coverage. Any additional request for an

amount of coverage will require another application. Click OK to close the dialog and

return to the modeling wizard.

The Adding a relation screen opens. We want to add a verb phrasing, so select the add
verb phrasing option and click Next >. The Adding a phrasing screen opens. Let’s look

at the default phrasing first:

 an application does not have an amount of money

 an application has an amount of money

The first thing you probably noticed is that the concept coverage is absent from the

phrasing. We are building a ternary (three-part) relation – application, amount of money,

and coverage. Let’s review the desired phrasing again: an application requests coverage

for an amount of money. In this phrasing, we have three grammatical roles. Application is

the subject, coverage is the direct object, and for an amount of money is a prepositional

phrase.

Without the concept coverage in the relation, HaleyAuthority has guessed correctly that

application is the subject, but it has guessed incorrectly that amount of money is the

direct object. To fix this, we will add the concept coverage and put it in the direct object

role. In the Roles in phrasing section of the screen, click . The Edit grammatical

role dialog opens.

We have already determined that coverage is the direct object, so select direct object

from the Grammatical Role list. Change the Type of Role to Syntactic text, because

while adding coverage to the phrasing will make the phrasing more graceful, coverage

doesn’t actually participate in the underlying relation that HaleyAuthority will convert to an

Eclipse relation. Eclipse merely needs to know that an application requests an amount of

HaleyAuthority Tutorial

Haley Systems, Inc. 68

money. The fact that we call that amount of money coverage is immaterial. Finally, type

coverage in the Text field. Click OK to close the dialog.

A Yes or No dialog opens. HaleyAuthority warns you that another concept is currently in

the direct object role. As we discussed earlier, HaleyAuthority had placed amount of

money in the direct object role by default. You are asked if you want to “unassign” the

direct object role so that it can be “reassigned” to coverage. Only one concept can hold

the role of direct object, and we know that it should be coverage, so click Yes.

We return to the modeling wizard, which displays the updated roles in the Roles in
phrasing section.

Coverage is now in the direct object role, and HaleyAuthority has changed amount of

money from a direct object to an indirect object. We know that isn’t correct, we already

determined that amount of money is part of the prepositional phrase for an amount of

money. In a few minutes, we will assign amount of money to the role of prepositional

phrase that follows coverage, but first, let’s look at the current status of the phrasings:

 an application does not have an amount of money coverage

 an application has an amount of money coverage

Not only do we need to change the grammatical role of amount of coverage, we also

have to change the verb from has to requests.

Click on the Verb list to see if requests is in HaleyAuthority’s dictionary. It is not, so click

New… next to the Verb list to open the Verb dialog. Enter the base form, request, in the

HaleyAuthority Tutorial

Haley Systems, Inc. 69

Base field. HaleyAuthority will fill in the other forms of the verb. Review all of the forms,

as well as the sentences, to make sure that HaleyAuthority entered the correct forms.

Click OK to close the dialog and return to the modeling wizard. Requests is automatically

selected in the Verb list, and the phrasings have changed to the following:

 an application does not request an amount of money coverage

 an application requests an amount of money coverage

Now we simply need to fix the grammatical role of amount of money and the phrasings

will be correct. In the Role in phrasings section of the screen, double-click on amount of

money to open the Edit role dialog. We know that amount of money will follow coverage

in the phrasings, so select follows coverage from the Grammatical Role list.

HaleyAuthority has correctly guessed that Type of role is Relational. The phrasing is for

an amount of money, so select for from the Preposition list. Finally, HaleyAuthority has

correctly selected an amount of money from the Relational Role list. The settings for this

role are complete, so click OK to close the dialog and return to the modeling wizard.

We now have the phrasings we want, so click Next >. The modeling wizard closes.

Let’s check HaleyAuthority’s progress on understanding the condition:

the application requests coverage for more than 80% of the income of the

application's applicant

HaleyAuthority Tutorial

Haley Systems, Inc. 70

4.6.2 Adding the phrasing an income of a person

Income, like coverage, is a quantity that measures an amount of money. In the noun

phrase we are about to add, we want to relate the concepts income and person. To add

the phrasing, drag amount of money up the tree and drop it on person.

The Updating the relation's roles and properties modeling wizard opens. Type the

relation name in the Name field, such as, aPersonEarnsAnAmountOfMoney. The default

properties of the roles are correct; there is no need to edit the roles. Click Next >.

The Adding a relation screen opens. We want to add a noun phrasing, so type an

income of a person in the add noun phrasing option and click Next >. Because

HaleyAuthority does not understand income, the Adding the noun… screen opens. The

default settings for income are correct, so click Next >. The modeling wizard closes.

Let’s check HaleyAuthority’s progress on understanding the condition:

the application requests coverage for more than 80% of the income of the
application's applicant

The condition is now understood.

Next we will move on to adding a series of health questions and telling HaleyAuthority

what to do with the applicant’s answers.

4.7 The applicant’s answers

The applicant is asked to answer three questions pertaining to his or her health. If the

applicant answers yes to any of the questions, then the application should be referred.

We need to add a condition that will evaluate the answers to the questions. Therefore,

add the following condition to the statement, an application should be referred, if;

a health question on the application was not answered with No

HaleyAuthority doesn’t know about questions and answers yet. We’re going to have to

explain in some depth. We’ll have to tell HaleyAuthority what a question is. A question

could have properties, such as the text of the question and the correct answer, so a

question is probably an entity. There might be multiple types of questions, so we probably

should define a “health question” as a subentity of question. There will be specific

instances of health questions, such as Question 1, Question 2, and Question 3. This

much is clear.

We can easily classify answers by specifying two instances: Yes and No.

Finally, we want to define the following relation that connects the entities question,

application, and answer: a question on an application was answered with an answer.

HaleyAuthority Tutorial

Haley Systems, Inc. 71

In review, so that HaleyAuthority can understand the condition, we will:

 Add the entities question, health question, and answer

 Add Yes and No as instances of answer

 Add the relation a question on an application was answered with an answer

4.7.1 Adding the entities question, health question, and answer

We have already defined applicant, but questions, health questions, and answers are

new entities. We need to create an answer entity, a question entity, a health question
subentity. Health question can be added as a compound noun. By now this should be

easy, so we’ll leave the details to you.

When you are finished, you should see the following:

4.7.2 Adding instances of a health question and instances of an answer

Now add the instances of health question:

 Have you been diagnosed with diabetes?

 Have you ever been diagnosed with cancer?

 Have you ever had a heart attack?

and the instances of answer:

 no

 yes

HaleyAuthority Tutorial

Haley Systems, Inc. 72

4.7.3 Adding the relation aQuestionOnAnApplicationWasAnsweredWithAnAnswer

Now we can build the relation. We will not use the drag-and-drop technique this time

because that works best for binary (two-part) relations, and this relation has three parts

(application, question, and answer).

Right-click the application entity and select Add a relation involving an application…
from the menu. This opens the Updating the relation's roles and properties modeling

wizard. Type the relation name, aQuestionOnAnApplicationWasAnsweredWithAnAnswer,

in the Name field.

Click in the Roles section of the modeling wizard to add the concept question, and

then again to add the concept answer. We now have all three parts of the relation.

Happily, the default properties for all three concepts are correct, so it is not necessary to

open the Edit role dialog to edit the properties.

HaleyAuthority Tutorial

Haley Systems, Inc. 73

Click Next >. The Adding a relation involving an application screen opens. We want

to create a verb phrasing, so select the add verb phrasing option and click Next >. The

Updating the relation’s roles and properties screen opens, but it shows only the

application and question concepts, not the answer concept. Why not?

When you create relations with three or more elements, HaleyAuthority gets cautious

about assigning default syntactic roles in phrasings. It assumes that the first concept is

the subject (in this case, application) and the second concept is the direct object (in this

case, question), but then it leaves the others concepts to you.

Before we add the answer concept, however, let’s figure out the grammatical roles of

application and question, as well as add any modals, adverbs, auxiliaries, verbs, or

adjectives that will be required to build the relation.

HaleyAuthority Tutorial

Haley Systems, Inc. 74

Compare the current phrasing to the desired phrasing:

 Current phrasing: an application has a question

 Desired phrasing: a question on an application was answered with an answer

The first thing we need to do is change the subject from application to question. Double-

click question to open the Edit grammatical role dialog and change the Grammatical
role to subject. Click OK to close the dialog. HaleyAuthority warns you that another

concept already holds that role (application) and asks if you want to unassign the role.

Click Yes.

Let’s check the phrasing again:

 Current phrasing: a question has an application

 Desired phrasing: a question on an application was answered with an answer

We need to change the relation between question and application so that it follows

question and is joined with the preposition on. Use the Edit grammatical role dialog to

change the Grammatical Role of application to follows a question and then add the

preposition on.

Check the phrasing again:

 Current phrasing: a question on an application has

 Desired phrasing: a question on an application was answered with an answer

We are making quick progress in building this relation. Next we will change the verb

phrase from has to was answered.

Select was from the Auxiliary list, and then look for answered in the Verb list. You might

expect to find answer in the list because you just added the concept answer to build this

relation. But you added answer as a noun, and we need to add answer as a verb.

Click the New… button next to the Verb list to enter the Verb dialog. Type answer in the

Base field; HaleyAuthority will guess at the various forms of the verb. While

HaleyAuthority does a good job guessing the plural (-s) form, it has a bit of trouble with

the spelling of the -ing participle, past, and -ed participle forms. Correct the spelling of

these forms of the verb answer (it should be, respectively, answering, answered, and

answered) and then close the dialog. HaleyAuthority has automatically selected

answering from the Verb list. That is not quite right, though – we want answered. Select

answered from the Verb list.

How is the phrasing coming?

HaleyAuthority Tutorial

Haley Systems, Inc. 75

 Current phrasing: a question on an application was answered

 Desired phrasing: a question on an application was answered with an answer

Now we are ready to add the third concept to the relation.

Click to open the Edit grammatical role dialog. We know that the position of answer

in the relation is following the verb. Therefore, select follows verb from the Grammatical
Role list. Because answer is part of the prepositional phrase with an answer, select with

from the Preposition list. Finally, we select the concept noun phrasing from the

Relational Role list; select an answer. Click OK to close the dialog.

Take a final look at our phrasing:

Our phrasing is correct. Click Next >. The modeling wizard closes. Now, let’s check how

much of the condition HaleyAuthority understands.

a health question on the application was not answered with No

HaleyAuthority understands the condition perfectly.

4.8 Height and weight limits

The KBA should take a hard look at any policy that refers to a table. HaleyAuthority can

deal with table-based policies, but first do a sanity check. Where did the table come

from? If the table was generated by a formula in a spreadsheet, it is easier to allow

HaleyAuthority to use the same formula rather than input the table values and then teach

HaleyAuthority how to interpolate values.

HaleyAuthority Tutorial

Haley Systems, Inc. 76

The raw policy said, if the build table height and weight are within normal limits then the

applicant might be eligible. A little research reveals that the table is based on a body

mass index formula. Normal was defined as a body mass index between 20 and 30. That

creates a new policy: An application should be referred if the applicant's body mass index

is less than 20 or is more than 30.

The body mass index (BMI) is calculated as follows:

BMI = Weight * 703 / Height2

An applicant's body mass index is the applicant’s weight in pounds times 703 divided by

the square of the applicant’s height in inches. (We are specifying pounds and inches in

this example to show you HaleyAuthority’s ability to convert units automatically,

something that we will discuss later in this example.)

We need to enter two statements and a condition. For now, we will enter the statements

in the Referral Module (we will later create a new module, Calculation Module, and

move these statements to the new module). The condition will be entered along with the

other conditions we have entered to this point. The statements look like this:

a person's body mass index is the person's weight in pounds times 703 divided by the

square of the person's height in inches

the square of a number is the number times the number

And the condition on the “an application should be referred” statement looks like this:

the body mass index of the application's applicant is not between 20 and 30

HaleyAuthority does not seem to know about body mass index, height, weight, or square

of the height. We will have to tell it about all of these values, and associate them with the

applicant entity.

Here is a related point. HaleyAuthority understands that numeric values often have units,

and it understands that numeric values can also have compound units. Therefore, if you

write a rule that states that two different units, such as pounds multiplied by square foot,

equals a third unit, pounds per square foot, you can then implement that rule in other

statements or conditions.

For the purposes of this example, however, we do not need to use compound units,

because body mass index has no units (despite the fact that it is calculated by using two

different units – pounds and inches). An index has no units; it is simply a floating-point

number we compare with a threshold. We would define an applicant's BMI as a simple

float.

HaleyAuthority Tutorial

Haley Systems, Inc. 77

To allow HaleyAuthority to understand the two statements and condition that allow us to

calculate BMI, we will:

 Add the concepts:

– body mass index and square (number)

– height and weight (amount)

 Add the noun phrasings the body mass index of a person, the weight of a person, the

height of a person and the square of a number

4.8.1 Adding the concepts body mass index, square, height, and weight

Both body mass index and square are numbers (Concepts > quantity > number, real
number). Height and weight, however, are amounts (Concepts > quantity > amount).

4.8.1.1 Body mass index and square

First, we will create body mass index. Navigate into the quantity node and look for unit-

free numeric values. For the most accurate results, we would prefer to be dealing with

real numbers (floats). Right-click on number, real number and select Add a kind of a
real number… from the menu.

The Add a phrase modeling wizard opens. Type a body mass index in the enter a noun
phrase that identifies the concept field. Click Next >. The Identifying compound
noun screen of the modeling wizard opens. The wizard prompts you to identify any

compound nouns in the noun phrase.

HaleyAuthority Tutorial

Haley Systems, Inc. 78

Check the body mass index checkbox to indicate that body mass index is a compound

noun and then click Next >. The Adding a compound noun… screen opens.

HaleyAuthority knows that the noun body mass index is not in the knowledgebase

dictionary, so the wizard prompts you to add body mass index as a new noun. Accept the

default properties defined by HaleyAuthority for body mass index by clicking Next >. The

modeling wizard closes and the new value, body mass index, is added to the knowledge

tree.

Next we will create the value square.

As in the case of body mass index, there is no necessity to associate a unit with the

square value. Therefore, create the value square in the same manner as body mass

index.

4.8.1.2 Height and weight

Now we will create the value height; height is an amount of distance.

Right-click on amount of distance (Concepts > quantity > amount > amount of
distance) to open its Object menu. Select Add > a kind of an amount of distance...
from the Object menu.

HaleyAuthority Tutorial

Haley Systems, Inc. 79

The Adding a phrase modeling wizard opens.

Enter the noun phrase, a height, in the field beneath the enter a noun phrase that
identifies the concept option and click Next >. The Adding a noun… screen is

displayed.

HaleyAuthority doesn't understand the noun height, so the modeling wizard prompts you

to add height as a new noun. Accept the default properties defined by HaleyAuthority for

height by clicking Next >. The concept’s properties window is now displayed. Notice that

the default unit for the height concept is already selected as inches. Accept the defaults

and click Next >. The modeling wizard closes and height is added to the knowledge tree.

Next, we will create the value weight; weight is an amount of mass.

Right-click on amount of mass (Concepts > quantity > amount > amount of mass) and

select Add > a kind of an amount of mass... from the menu. The Adding a phrase

modeling wizard opens. Enter the noun phrase, a weight, in the field beneath the enter a
noun phrase that identifies the concept option and click Next >. The Adding a
noun… screen is displayed.

HaleyAuthority doesn't understand the noun weight, so the wizard prompts you to add

weight as a new noun. Weight is both a count noun and a mass noun. Check the mass

checkbox and then accept the remainder of the default properties defined by

HaleyAuthority for weight by clicking Next >. The concept’s properties window is now

displayed. Notice that the default unit for the weight concept has defaulted to ounces,

which is incorrect. Change this value to pounds and click Next >. The wizard closes and

the new value, weight, is added to the knowledge tree.

HaleyAuthority Tutorial

Haley Systems, Inc. 80

We have added all four of the concepts we require for the two statements and conditions;

check to see if HaleyAuthority understands the statements:

a person's body mass index is the person's weight in pounds times 703 divided by the

square of the person's height in inches

the square of a number is the number times the number

the body mass index of the application's applicant is not between 20 and 30

Very little has changed! Why not? It is not enough to create the values; the values are

meaningless until they appear in relations.

4.8.2 Adding the relations theHeightOfAPerson, theWeightOfAPerson,
theBodyMassIndexOfAPerson, and theSquareOfANumber

The next step is to add the relations, theHeightOfAPerson, theWeightOfAPerson,

theBodyMassIndexOfAPerson, and theSquareOfANumber.

4.8.2.1 theHeightOfAPerson, theWeightOfAPerson, and theBodyMassIndexOfAPerson

Drag the height concept on to the person concept to open the Updating the relation's
roles and properties modeling wizard. Type the relation name, theHeightOfAPerson, in

the Name field. Edit the properties of the person concept to reflect that the role of person

in the relation is:

 Always filled

 Is unique

 Is required to participate

The default properties of the concept height are correct; there is no need to edit its

properties. Click Next > to display the Adding a relation… screen.

Type the noun phrase the height of a person in the add noun phrasing field and click

Next >. The modeling wizard closes and the new phrasing is added to the knowledge

tree under the concepts person and height.

HaleyAuthority Tutorial

Haley Systems, Inc. 81

Repeat the same steps to create the relations theWeightOfAPerson and

theBodyMassIndexOfAPerson.

4.8.2.2 theSquareOfANumber

The concept used to create the relation theSquareOfANumber is number. More precisely,

it is two numbers – number * number = number2. Therefore, we are going to drag the

concept number, real number and drop it on itself.

The Updating the relation's roles and properties modeling wizard opens. Type the

name of the relation, theSquareOfANumber, in the Name field.

Double-click on the first number concept in the Roles section of the wizard to open the

Edit role dialog. This concept will be the number that is multiplied by itself (e.g., 10 * 10),

therefore, we want to check the option a number participates in at most one such

relationship because a number has only one square. The option every such relationship

must have a number is checked by default, leave it checked. Click OK to close the dialog

and return to the wizard.

Now we want to change the Role Value Type of the other number concept so that it is

the result (number2) of number * number. In the Roles section of the wizard, double-click

on the second number concept to open the Edit role dialog.

Edit the properties of the concept so that every such relationship must have a number
and that number is the result of a function or predicate. Click OK to close the dialog

and to return to the modeling wizard. The role value type for one of the number concepts

is a result.

HaleyAuthority Tutorial

Haley Systems, Inc. 82

Click Next >. The Adding a relation… screen opens.

Type the square of a number in the add noun phrasing field and click Next >. The

modeling wizard closes and the relation is added to the tree.

Let’s see how much HaleyAuthority understands about the two statements and conditions

now.

a person's body mass index is the person's weight in pounds times 703 divided by
the square of the person's height in inches

the square of a number is the number times the number

the body mass index of the application's applicant is not between 20 and 30

HaleyAuthority seems happy with the three statements. Be sure to visit all three

statements and save each one using the OK button in the Edit statement/Edit
condition dialogs.

4.9 Adding the Calculation Module

As a matter of good form, we should create a new module, the Calculation Module, as a

container for the two statements that calculate the body mass index. These statements

create utility rules, not business policies, and they don’t belong in the Referral Module.

Policy makers do not need to see or modify these utility rules.

HaleyAuthority Tutorial

Haley Systems, Inc. 83

Right-click on the Modules & Statements node of the knowledge tree. Select Add a
module… Call the new module Calculation Module.

Then simply drag the utility rules from the Referral Module and drop them in the

Calculation Module. The result looks like this:

4.10 Final disposition rules

The rules we have defined up to this point either detect policy violations or perform low-

level calculations. The two remaining rules are fundamentally different.

 If the application should be referred, then refer the application to the underwriting

department.

 If the application should not be referred, then approve the application.

These two statements are presumed to have side effects; they either approve an

application or they refer it to underwriting. When either one of these rules fires, the

analysis is ended. The AA Application system records the decision in the database and

moves on to the next applicant. (In a real system, these rules would call functions that

alter fields in a database or that generate an XML file.)

Rules are data driven, and will try to fire as soon there is appropriate data to fulfill their

conditions. We say they try to fire because several rules may be ready at once, but only

one gets to fire. Each time a rule fires the state of knowledge changes by the insertion or

deletion of a fact. This forces the rule engine to reevaluate the list of rules still waiting to

fire.

This opportunism is the strength of a rule-based system but it also creates a problem. We

can permit the analysis rules to fire opportunistically… in any order at all… as long as

they have all the time they need to complete the analysis. These two new rules, however,

will prematurely end the analysis. They will try to fire as soon as their patterns encounter

matching facts. What does this mean in a practical sense?

HaleyAuthority Tutorial

Haley Systems, Inc. 84

If the application should be referred, then refer the application to the underwriting

department. This rule will try to fire the instant any of the rules determines that an

application should be referred. A rule like this one could prevent the firing of other rules

prematurely. That wouldn’t make much practical difference in the current example, but in

general we would like all of the rules to have the opportunity to fire, if appropriate, before

taking any permanent action.

What about the other rule? Can you anticipate what it will do? Look closely. If the

application should not be referred, then approve the application.

Eclipse reacts to the presence or absence of matching facts. The first rule will fire when

there exists even a single fact saying that the application should be referred. The other

rule will fire when no such fact exists.

The second rule will try to fire the instant any new application appears.

The information about a new application does not include a fact recommending referral.

Therefore, the approval rule tries to fire immediately. This is clearly a disruptive

development.

HaleyAuthority uses statement modules to separate related groups of statements. Each

module has a priority number, defaulting to zero.

The module’s priority setting can be used to force the rules of one module to wait until the

rules of another module have finished:

 At any given moment, all of the rules from the priority 0 modules are in equal

competition with one another for the opportunity to fire next. The order of firing is

opportunistic, and is not under the knowledgebase administrator’s control.

 If a rule from a module of priority -100 tries to fire, it will have to wait until all of the

higher-priority rules are finished.

 If a rule from a module with priority +100 suddenly matches data, it will instantly go to

the front of the line and fire, making all of the lower-priority rules wait their turn.

What is the correct thing to do here? We will create a new module for the two final rules,

and give it a negative priority. This forces the last two rules to wait until all of the other

rules are finished before firing. That way we won’t terminate the analysis prematurely.

How do we select a priority number for a module? The numbers have no inherent

significance. The default priority is 0. For a higher-priority module, pick any positive

integer. For a lower-priority module, pick any negative integer. It is a good practice to

leave some gaps between the numbers you choose, in case you need to create a module

of intermediate priority later on.

HaleyAuthority Tutorial

Haley Systems, Inc. 85

Right-click on the Modules & Statements node and select Add a module… Name this

module Final Disposition. Right-click on the new Final Disposition node and select

Properties… The Properties of module dialog opens. Set the module’s priority to -100,

so that these rules will run only when the other rules have finished. Click OK to close the

dialog

Add two new statements to this module:

approve an application if the application should not be referred

if an application should be referred then refer the application to the Underwriting

Department

The action of the first statement is imperative, meaning that it seems to be giving

someone an order. An imperative phrasing is a phrasing that has no explicit subject. The

implied subject is you: (You) approve the application.

To change a default phrasing into an imperative phrasing, one usually just reassigns the

subject of the phrasing to be the direct object.

As an experienced HaleyAuthority user, you recognize immediately that we need a

couple of new concepts and relations to support these statements:

 Create the relation approveAnApplication. You will need a new verb, approve, and

you’ll need to put application in the role of direct object. HaleyAuthority knows that a

phrasing without an explicit subject is imperative. You should be able to create this

on your own. The only difference is that this relation will have side effects; be sure to

indicate that the relation will have side effects when you are building the relation in

the modeling wizard. Something will happen outside of Eclipse when an application is

approved.

HaleyAuthority Tutorial

Haley Systems, Inc. 86

 Add a department entity with an underwriting department instance. Add the relation

referAnApplicationToADepartment. This relation uses the verb refer, with an

application in the role of direct object, and a department following an application with

the preposition to.

When the concepts and relations are in place, check the status of the draft statements. If

all has gone well, you will be able to save both statements as active rules.

4.11 Scenario

Mike Marks sat back from his keyboard and rubbed his eyes. The process of educating

HaleyAuthority for the first time had taken an afternoon of trial and error. Implementing

HaleyAuthority Tutorial

Haley Systems, Inc. 87

the first statement had taken significant effort because of the unfamiliar tasks and the

extensive infrastructure of entities, values and relations that had to be put in place. Mike

had exchanged several email messages with Haley customer support along the way.

The second statement, he found, was not quite as difficult to implement. The third

statement took only seconds to input, once the Haley representative told Mike about the

cascading menus. Mike found that the effort required to create a new statement fell off

very rapidly as HaleyAuthority learned more and more about the insurance domain.

By the time Mike reached the sixth statement, creating a new rule had become routine.

When he didn’t have an appropriate module, he created one. He typed in the statements

and then followed the bold print from left to right, methodically defining any phrase that

was unclear to HaleyAuthority. Creating a new entity was trivial. Adding a new attribute to

the entity took only seconds.

Mike surveyed his list of statements with satisfaction. He had the full system in place. As

promised, every statement had been entered in English. A policy maker could see at a

glance how the AA Application system behaved.

“Ok so far,” Mike mused to himself. “Let’s see if it runs.” Somewhere he’d seen a node

labeled “test cases.” Or maybe it was “regression tests.” He reached for the mouse…

HaleyAuthority Tutorial

Haley Systems, Inc. 88

5 Applying policy to test cases
HaleyAuthority lets the knowledgebase administrator create test cases and run them,

collecting trace messages as the rules activate and fire. You don’t have to set up the data

communication infrastructure just to see the rules make their first decisions.

First we will need a couple of typical applicants, John and Jane, with characteristics

chosen to produce referral (John) and approval (Jane).

Then we’ll need to create a test case for the applicants, and finally we’ll execute the test

case and view the trace messages. We’ll verify that the rules make the expected

decisions, and we’ll study how they interact with one another as they run.

5.1 Scenario

It was almost quitting time when Mike Marks looked up and found the company CEO at

the door of his office. “How’s did that natural language thing turn out?” asked the CEO.

“I was just about to test it,” replied Mike. “Pull up a chair.”

Mike gave the executive a quick tour of the AA Application system’s entities and

statements, and showed him how quickly he could create a new statement just by typing

it in.

“Yeah but does it run?” asked the boss. “Otherwise I’ll just stick with Notepad.”

“Let’s find out,” said Mike. “This is my test case…”

5.2 Applicant instances

In the final AA Application production system, data will enter Eclipse from records in an

SQL database or from an XML file. If that subsystem isn’t ready yet, we can manually

create some data objects in HaleyAuthority and use them to try out the rules.

5.2.1 John Doe

We begin by creating John Doe, who is an instance of a person. Right-click on person

and select Add > an instance or example…

HaleyAuthority Tutorial

Haley Systems, Inc. 89

The Instance dialog opens. Type John Doe in the Name field of the instance, and be

sure to put a checkmark in the This is an example for testing purposes only box.

Otherwise, the deployed system will diagnose John Doe every time you start it up.

Click OK to close the dialog. John Doe is now an instance of a person.

Right-click on the John Doe instance and select Properties… from the menu. The

Properties of instance dialog opens with the Instance tab displayed. Click on the Facts

tab to bring it to the front of the dialog. Now we are going to define the attributes of Mr.

Doe. In the Relationships section of the Facts tab, click to open the Select

Phrasings dialog. This dialog lists the attributes you may assign to John Doe.

HaleyAuthority Tutorial

Haley Systems, Inc. 90

While there is no specific phrasing that mentions smoker, there is a phrase that, when the

appropriate concepts are inserted, will produce the phrasing John Doe is a smoker. That

phrasing is a first concept is an instance of a second concept.

Select that phrasing and then click OK. The Select Phrasings dialog closes, however,

the Relationships for relation _isAnInstanceOf_ dialog opens in its place.

HaleyAuthority is asking you to fill in the concepts that will build the phrasing. Because

we are in the midst of adding facts about John Doe, HaleyAuthority has already selected

John Doe as one of the concepts. Select smoker as the second concept.

Click OK to close the dialog and return to the Facts tab. The new fact, John Doe is a

smoker, is listed on the tab.

HaleyAuthority Tutorial

Haley Systems, Inc. 91

In the Relationships section of the Facts tab, click again to open the Select

Phrasings dialog. This time, select the height of a person and click OK.

This time HaleyAuthority wants to know how tall John is. John is 48 inches tall. Type in

the value and click OK.

Now HaleyAuthority knows two facts about John. Using the same procedure, you may go

ahead and input all of the values shown in the following illustration. As you can see, John

is not a good bet for automatic life insurance approval.

We will also need an instance representing John’s application. Close the Properties of
instance dialog. Right-click on application and choose Add > an instance or
example… from the menu to open the Instance dialog. Type John Doe’s application in

the Name field and be sure to put a checkmark in the This is an example for testing
purposes only box. Click OK to close the dialog.

Now we will also need to tell HaleyAuthority some facts about the information included in

John Doe’s application. Add the following facts to John Doe’s application:

Then let’s associate John Doe with his application. Right-click on the John Doe instance

again and select Properties… from the menu. The Properties of instance dialog opens

with the Instance tab displayed. Click on the Facts tab to bring it to the front of the

dialog. Now we are going to add the following facts about John Doe’s application.

HaleyAuthority Tutorial

Haley Systems, Inc. 92

Here are the final facts for John Doe. The F icons indicate that these are facts. These

facts will become Eclipse facts for the rules to match.

Poor John is too short, too heavy, too old, too poor, and too greedy for automatic

approval. And he smokes while he handles poisonous reptiles. The AA Application

system should send his application to an underwriter like it is on fire.

5.2.2 Jane Doe

In contrast to John, Jane Doe eats sprouts and plays handball. Here she is. Add Jane

Doe as an instance along with her facts:

HaleyAuthority Tutorial

Haley Systems, Inc. 93

Don’t forget to add Jane Doe’s application and the facts for the application. This is

Jane’s application instance:

Here are the final facts for Jane Doe. Don’t forget to add a fact that she submits an

application!

The AA Application system will approve Jane in a heartbeat. At least we hope so. She

might be too petite. The body mass index has a lower limit for a reason.

5.3 Running a test case

A test case runs sample data against the current set of rules. It also stores the results of

past tests for comparison.

5.3.1 Defining the test case

Look for the Test Cases node at the very bottom of the knowledge tree in the Full View
pane. If you do not see it there, navigate to View menu > Options > Full View tab and

check the appropriate box to make this node appear in the tree. Click OK.

HaleyAuthority Tutorial

Haley Systems, Inc. 94

To add a test case, right-click the Test Cases node and select Add a test case…

This opens the Edit test case dialog. Type Life Insurance Test in the Description field.

In the Case Data section of the dialog, the default option is Examples, meaning that this

case will use example data already defined in HaleyAuthority (the applicant instances).

Accept the default Case Data setting and click OK to close the dialog. Life Insurance
Test is added as a test case.

The C indicates that it is a test case.

The next step is to populate the new test case with example data. To do this, drag the

John Doe instance and drop it on Life Insurance Test. The Add dialog opens and asks:

“Do you want to add the dependent example ‘John Doe’?” Click Yes. The Add dialog

opens again and asks: “Do you want to add the dependent example ‘John Doe’s

application’?” Click Yes again. You have just added both John Doe and the Facts

associated with him and John Doe’s application and the Fact associated with it.

Repeat the same process to add Jane Doe and Jane Doe’s application to the Life
Insurance Test.

HaleyAuthority Tutorial

Haley Systems, Inc. 95

The E indicates example data. Examples are objects that exist only within

HaleyAuthority. They are different from Instances, as Instances are generated in the

deployment code and can be loaded into the rules engine.

5.3.2 Trace messages

We are going to need some trace messages in order to see what the rules actually do.

Pull down the Tools menu and select Options…

In the Options dialog, click on the Tests & Cases tab to bring it to the front of the dialog.

Select all of the Watch items – this means that the trace messages will include all of

these types of information. Click OK to close the Options dialog.

Next, pull down the View menu and select Output. This opens a special window for

viewing the trace messages.

The new window will probably bury the main HaleyAuthority window. You can minimize

the Output window for now.

Right-click the Life Insurance Test node and select Test Case from the menu.

We are about to run the rules for the first time. Before we do, there is some

housekeeping to do.

5.3.3 Deploying the logic for a test case

When you select Test Case, HaleyAuthority asks if you want to deploy your logic. In

other words, have you changed the rules or sample data since the last time you ran this

test case? You probably did, or there would be no reason to run the case again, so click

Yes. The Deploy Configuration dialog opens. HaleyAuthority wants to know where to

save the rule files.

Click Browse in the lower right of the dialog and select the directory where you want to

save the rule files.

HaleyAuthority Tutorial

Haley Systems, Inc. 96

Click OK. The Deployment Progress dialog opens, which displays the progress of the

test.

5.3.4 Results of the test case

After running the test case, you will find a time-stamped set of results below the Life
Insurance Test node.

This is a list of the rules (statements) that fired during the test. The A icon indicates that

these are applications of the rules. The number at the beginning of the line is the number

of times the rule fired during the test. This display gives you a general indication that a

test has executed correctly. For instance, this application shows that one applicant’s

application (John Doe’s application) was rejected for automatic approval, while another

applicant’s application (Jane Doe’s application) was approved.

For more detail, we turn to the Output window. Pull down the Window menu and select

Output. We find a solid block of trace messages in the Output window, detailing exactly

what the rules have done.

HaleyAuthority Tutorial

Haley Systems, Inc. 97

Test Case: Life Insurance Test
=> Jane Doe is an instance of an applicant
=> John Doe is an instance of an applicant
=> the weight of Jane Doe is 118 pounds
=> the weight of John Doe is 300 pounds
=> Jane Doe's application requests coverage for 20000 dollars
=> John Doe's application requests coverage for 30000 dollars
=> an income of Jane Doe is 90000 dollars
=> an income of John Doe is 14000 dollars
=> the age of Jane Doe is 25 years
=> the age of John Doe is 56 years
=> the height of Jane Doe is 64 inches
=> the height of John Doe is 48 inches
=> Jane Doe's application is an instance of an application
=> John Doe's application is an instance of an application
=> Jane Doe is an instance of a person
=> John Doe is an instance of a person
=> John Doe is an instance of a smoker
=> firefighter is hazardous
=> an occupation of Jane Doe is pharmacist
=> scuba diver is hazardous
=> an occupation of John Doe is snake charmer
=> snake charmer is hazardous
=> Have you been diagnosed with diabetes? on John Doe's application was answered with No
=> Have you been diagnosed with diabetes? on Jane Doe's application was answered with No
=> Have you ever been diagnosed with cancer? on John Doe's application was answered with No
=> Have you ever been diagnosed with cancer? on Jane Doe's application was answered with No
=> Have you ever had a heart attack? on John Doe's application was answered with Yes
=> Have you ever had a heart attack? on Jane Doe's application was answered with No
=> John Doe submits John Doe's application
=> Jane Doe submits Jane Doe's application
Execute: condition 3: the application's applicant's age is less than 18 years or is at least 40 years .
Execute: condition 4: a smoker submits the application .
Execute: condition 5: the occupation of the person who submits the application is hazardous .
Execute: condition 6: the application requests coverage for more than 80% of the income of the application's
applicant .
Execute: condition 7: a health question on the application was not answered with No .
Execute: statement 2: an application should be referred .
=> John Doe's application should be referred
Execute: statement 9: the square of a number is the number times the number .
=> the square of 64 is 4096
Execute: statement 8: a person's body mass index is the person's weight in pounds times 703 divided by the
square of the person's height in inches .
=> the body mass index of Jane Doe is 20.252441
Execute: statement 9: the square of a number is the number times the number .
=> the square of 48 is 2304
Execute: statement 8: a person's body mass index is the person's weight in pounds times 703 divided by the
square of the person's height in inches .
=> the body mass index of John Doe is 91.536458
Execute: condition 10: the body mass index of the application's applicant is not between 20 and 30 .
Execute: statement 11: approve an application if the application should not be referred .
=> approve Jane Doe's application
Execute: statement 12: if an application should be referred then refer the application to the Underwriting
Department .
=> refer John Doe's application to Underwriting department

That’s a thick block of small print. Let’s take this one step at a time, to see how the rules

really work.

=> an income of Jane Doe is 90000 dollars
=> an income of John Doe is 14000 dollars
=> Jane Doe's application requests coverage for 20000 dollars
=> John Doe's application requests coverage for 30000 dollars
=> Jane Doe's application is an instance of an application
=> John Doe's application is an instance of an application
=> Jane Doe is an instance of a person
=> John Doe is an instance of a person

HaleyAuthority Tutorial

Haley Systems, Inc. 98

=> John Doe is an instance of a smoker

HaleyAuthority starts to compare the facts about the applicants and applications against

the statement and conditions in the Referral Module. At this point, HaleyAuthority has

determined that John and Jane’s applications are instances of applications (so every fact

associated with an application is also associated with Jane and John’s application), both

applicant’s have an income, and both applications include a requested amount of

coverage. In addition, Jane and John are both instances of a person (so every attribute of

a person will be an attribute of Jane and John). Finally, John is an instance of a smoker.

We see no mention of Jane being a smoker, therefore, John matched the fact, but Jane

did not.

Let’s continue reviewing the output:

=> firefighter is hazardous
=> scuba diver is hazardous
=> snake charmer is hazardous
=> Have you ever had a heart attack? on John Doe's application was answered with yes
=> Have you ever had a heart attack? on Jane Doe's application was answered with no
=> Have you ever been diagnosed with cancer? on John Doe's application was answered with no
=> Have you ever been diagnosed with cancer? on Jane Doe's application was answered with no
=> Have you been diagnosed with diabetes? on John Doe's application was answered with no
=> Have you been diagnosed with diabetes? on Jane Doe's application was answered with no
=> John Doe submits John Doe's application
=> Jane Doe submits Jane Doe's application

Now HaleyAuthority has figured out which of the six occupations are hazardous

(firefighter, scuba diver, and snake charmer) and evaluates John and Jane’s answers to

the health questions. Of the six questions asked of the two applicants, only one question

yielded a yes answer – John answered yes to the question Have you ever had a heart

attack? Lastly, HaleyAuthority ascertains the relationship between the applicants and

their applications.

Execute: condition 4: a smoker submits the application.
Execute: condition 5: the occupation of the person who submits the application is hazardous.
Execute: condition 7: a health question on the application was not answered with No.
Execute: statement 2: an application should be referred.
=> John Doe's application should be referred

HaleyAuthority now starts executing Referral Module rules based upon the facts it has

evaluated to this point:

 Because John is an instance of a smoker, the condition a smoker submits the

application fires.

 Because John’s occupation is snake charmer and snake charmer has been identified

as a hazardous occupation, thus, John has a hazardous occupation, the condition

the occupation of the person who submits the application is hazardous fires.

HaleyAuthority Tutorial

Haley Systems, Inc. 99

 Because John answered yes (not no) to one of the health questions, the condition a

health question on the application was not answered with No fires.

Based upon the firing of the three conditions, the statement that the conditions are

attached to (an application should be referred) fires. As a result, John Doe’s application

should be referred. Note that none of the statement’s conditions fired when evaluating

Jane’s application, thus, her application has not yet been recommended for referral at

this point.

One of the calculation rules has fired. The square of John’s height is calculated to be

2304. Up to this point there has been no chaining. All of these rules were ready to fire

from the moment the rule engine began to run. They might have fired in any order. This

particular order has no significance.

The square calculation, however, starts a chain reaction. Now that the square of John’s

height is known, his body mass index can be calculated.

John’s body mass index is determined to be 91.5365. Now that the body mass index is

known, the rules can determine whether it is out of range.

John’s body mass index is extremely high, so he should be referred to underwriting.

At this point, the calculation and reference rules have exhausted their matching facts.

They are all finished, and the net effect is to trigger the final disposition rule. This rule has

a lower priority than the others, and has been waiting patiently ever since the first rule

complained that John was a smoker.

John Doe’s application has been referred to underwriting.

5.4 Scenario

“Looks like it works,” Mike concluded with relief.

His CEO sat back and frowned. “OK, but what if I want to change something? Suppose I

decide to refer anyone with a body mass index below 22, for example?”

Mike smiled. “Time me,” he said.

While his boss looked at his Rolex, Mike turned to HaleyAuthority and edited the

statement about the applicant’s body mass index. He changed 20 to 22 and clicked OK.

Then he ran the test case again, redeployed the logic, and expanded the results. “Time!”

The CEO glanced at him in surprise. “Twenty seconds? You revised a running policy in

twenty seconds?”

HaleyAuthority Tutorial

Haley Systems, Inc. 100

“And tested it, too,” Mike smiled, pointing at the screen. “And this time Jane didn’t get

automatic approval. Her application has been routed to underwriting because she is too

thin.”

The CEO leaned in to read the trace messages on Mike’s screen. “Sure did,” he

admitted. Then he smiled and clapped Mike on the shoulder. “Good work, Mike. This is

what I’ve been looking for.”

Mike felt very pleased for a fleeting five seconds. The CEO snapped open his briefcase

and extracted a sheaf of notes. “Here’s the next 500 policies from John Stevens,” he

said, handing the bundle to Mike. “I’ll need you to demo the prototype to the board at 10

a.m. Monday. See you there.” He got up and walked out. “Wear a tie!”

Mike stared after the departing figure. Then he weighed the stack of paper in his hand.

Five hundred policies. Estimating ten policies per hour… he looked at his watch. Fifty

hours would be 7:00 pm Sunday night, if he worked straight through and didn’t sleep. “No

problem,” Mike sighed.

5.5 HaleyAuthority and your business

The advantages of using HaleyAuthority are dramatic, and pose obvious benefits to any

business:

 If you can write a statement like the ones in this manual, you can program a rule-

based policy system. There is no need to master arcane syntax.

 If you can read a statement like the ones we have shown you, you can understand

what the policy system really does. Programmers don’t have to trace the code to find

out.

 If you can edit a statement like the ones presented here, you can change what the

system does. You can implement a critical policy change in a matter of seconds.

HaleyAuthority gives you control over your business policies. It understands and obeys.

